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ABSTRACT We study the stochastic dynamics of growth and shrinkage of single actin filaments or microtubules taking into
account insertion, removal, and ATP/GTP hydrolysis of subunits. The resulting phase diagram contains three different phases:
two phases of unbounded growth: a rapidly growing phase and an intermediate phase, and one bounded growth phase. We
analyze all these phases, with an emphasis on the bounded growth phase. We also discuss how hydrolysis affects force-velocity
curves. The bounded growth phase shows features of dynamic instability, which we characterize in terms of the time needed for
the ATP/GTP cap to disappear as well as the time needed for the filament to reach a length of zero (i.e., to collapse) for the first
time. We obtain exact expressions for all these quantities, which we test using Monte Carlo simulations.

INTRODUCTION

A large number of structural elements of cells are made of
fibers. Well-studied examples of these fibers are microtu-
bules and actin filaments. Microtubules are able to undergo
rapid dynamic transitions between growth (polymerization)
and decay (depolymerization) in a process called dynamic
instability (1). Actin filaments are able to undergo treadmil-
ling-like motion. These dynamic features of microtubules
and actin filaments play an essential role in cellular biology
(2). For instance, the treadmilling of actin filaments occurs in
filopodia, lamellipodia, flagella, and stereocilia (3–5). Actin
growth dynamics is also important in acrosome reactions,
where sperm fuses with egg (6–8). During cell division,
the movements of chromosomes are coupled to the elonga-
tion and shortening of the microtubules to which they bind
(2,9). Recently, it has been discovered that ParM, a prokary-
otic actin homolog, also displays dynamic instability (10).

Energy dissipation is critical for these dynamic nonequi-
librium features of microtubules and actin. Energy is dissi-
pated when ATP (respectively, GTP) associated to actin
monomers (respectively, tubulin dimers) is irreversibly
hydrolyzed into ADP (respectively, GDP). Since this hydro-
lysis process typically lags behind the assembly process,
a cap of consecutive ATP/GTP subunits can form at the
end of the filament (11,12).

Let us first consider studies of the dynamic instability of
microtubules. The notion of dynamic instability as a switch
between growing and shrinking phases was put forward in
early studies of Hill (13) and was reanalyzed a decade later
in a simple and pedagogical model proposed by Dogterom
and Leibler (14). In the Dogterom and Leibler model,
a microtubule exists either in a rescue phase (where a GTP

cap exists at the end of the microtubule) or a catastrophe
phase (with no GTP cap), with stochastic transitions between
the two states. A limitation of such a model is that a switching
frequency is built in the model rather than derived from
a precise theoretical modeling of the GTP cap. This question
was addressed later by Flyvbjerg et al. (15,16), where
a theory for the dynamics of the GTP cap was included. At
about the same time, a mathematical analysis of the Dog-
terom-Leibler model using Green functions formalism was
carried out in Bicout (17). The study of Flyvbjerg et al.
(15,16), was generalized in Zong et al. (18), with the use
of a variational method and numerical simulations. This
kind of stochastic model for the dynamic instability of micro-
tubules was further studied by Antal et al. (19,20). The
model of Antal et al. takes into account the addition and
hydrolysis of GTP subunits, and the removal of GDP
subunits. Exact calculations are carried out in some partic-
ular cases such as when the GDP detachment rate goes to
zero or infinity, however, no exact solution of the model is
given for arbitrary attachment and detachment rates of both
GTP and GDP subunits.

It was thought for a long time that only microtubules were
able to undergo dynamic instability. Recent experiments on
single actin filaments, however, have shown that an actin
filament can also have large length fluctuations slightly
above the critical concentration (21,22). A behavior reminis-
cent of dynamic instability was also observed in experiments
where actin polymerization was regulated by binding
proteins such as ADF/cofilin (23,24). In this case, however,
it is important to keep in mind that the large length fluctua-
tions concern only the pointed end of the filament and are
due to the cofilin-actin interaction. Vavylonis et al. (25)
have studied theoretically actin polymerization kinetics in
the absence of binding proteins. Their model takes into
account polymerization, depolymerization, and random
ATP hydrolysis. In their work, the ATP hydrolysis was
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separated into two steps: the formation of ADP-Pi-actin and
the formation of ADP-actin by releasing the phosphate Pi.
Vavylonis et al. (25) have reported large fluctuations near
the critical concentration, where the growth rate of the fila-
ment vanishes. More recently, Stukalin et al. (26) have
studied another model for actin polymerization, which takes
into account ATP hydrolysis in a single step (neglecting the
ADP-Pi-actin state) and occurring only at the interface
between ATP-actin and ADP-actin (vectorial model) or at
a random location (random model). This model too shows
large fluctuations near the critical concentration, despite
the differences mentioned above. Note that both mechanisms
(vectorial or random) are still considered since experiments
are presently not able to resolve the cap structure of either
microtubule or actin filaments.

In this article, we study the dynamics of a single filament,
which can be either an actin filament or a microtubule, using
simple rules for the chemical reactions occurring at each site
of the filament. The advantage of such a simple coarse-
grained nonequilibrium model is that it provides insights
into the general phenomenon of self-assembly of linear fibers.
Here, we follow the model for the growth of an actin filament
developed in Stukalin and Kolomeisky (26). We describe
a new dynamical phase of this model, which we call the
bounded growth phase in accordance with the terminology
used in microtubules where this phase is well known (14).
The characterization of this bounded growth phase is particu-
larly important, because this is the phase that should be
observable in batch experiments with actin. It may also
explain the observation of time-independent filament distribu-
tion of actin in Fujiwara et al. (21). In addition, we analyze the
dynamic instability with this model. We think that dynamic
instability is not a specific feature of microtubules but could
also be present in actin filaments. We argue that one reason
why dynamic instability is less often observed with actin
than with microtubules has to do with the physical values
of some parameters that are less favorable for actin than for
microtubules. This conclusion is also supported by the
work of Hill in his theoretical study of actin polymerization
(11,12). In these references, a discrete site-based model for
a single actin filament with the vectorial process of hydrolysis
is developed, which has many similarities with our model.

In short, the model studied in this article presents three
dynamical phases, which are all nonequilibrium steady states:
1) a bounded growth phase (phase I), where the average cap
length and the filament length remain constant with time; and
two unbounded growth phases, 2), an intermediate phase
(phase II), where the average cap length remains constant
and the filament grows linearly with time, and 3), a rapidly
growing phase (phase III) where the cap and the filament
both grow linearly with time. The phases II and III were
already present in the study of Stukalin and Kolomeisky
(26), but phase I was not analyzed there. Thus, the description
of the main features of phase I (such as the average length, the
distribution of lengths) is one of main results of this article.

In addition, we discuss how GTP/ATP hydrolysis affects
force-velocity curves and we characterize the large fluctua-
tions of the filament, by calculating the time needed for the
cap to disappear in phases I and II as well as the time needed
for the complete filament to reach a length of zero (i.e., to
collapse) for the first time in phase I. Due to the simplicity
of the model, we are able to obtain exact expressions for
all these quantities. We also test these results using Monte
Carlo simulations.

MODEL

We study a model for the dynamics of single actin or microtubule filaments

taking into account ATP/GTP hydrolysis. Our model is very much in the
same spirit as that of Stukalin and Kolomeisky (26) and has also several

common features with the model of Hill et al. (11,12). We assume that poly-

merization occurs, for actin, via the addition of single ATP subunit (GTP

subunit for microtubule), at the barbed end (plus end for microtubule) (2) of
the filament.We assume that the other end is attached to a wall and no activity

happens there. LetU andWT be the rates of addition and removal ofATP/GTP

subunits, respectively, which can occur only at the filament end. The subunits

on the filament can hydrolyze ATP/GTP and become ADP/GDP subunits
with a rate R. We assume that this process can occur only at the interface of

ATP-ADP or GTP-GDP subunits. This corresponds to the vectorial model

of hydrolysis, which is used in themodel of Hill et al. (11,12). Once the whole
filament is hydrolyzed, the ADP/GDP subunit at the end of the filament can

disassociate with a rate WD. The addition, removal, and hydrolysis events

are depicted in Fig. 1. We denote by d the size of a subunit.
This model provides a simple coarse-grained description of the nonequi-

librium self-assembly of linear fibers. More sophisticated approaches are

possible, which could include in the case of actin, for instance, additional

steps in the reaction such as the conversion of ATP into ADP-Pi-actin or

the possibility of using more than one rate for the addition of ATP subunits.
It is also possible to extend our model to include growth from both ends of

the filament rather than from a single end, as discussed in Stukalin and

Kolomeisky (26). Another feature of actin or microtubule filaments, which
we leave out in our model, is that these fibers are composed of several pro-

tofilaments (two for actin and typically 13 for microtubules). In the case of

actin, it is reasonable to ignore the existence of the second protofilament due

to strong interstrand interactions between the two protofilaments (26). In
fact, we argue that the model with a single filament can be mapped to

a related model with two protofilaments under conditions that are often

met in practice. Indeed the mapping holds provided that the two protofila-

ments are strongly coupled, grow in parallel to each other, and are initially
displaced by half a monomer. The two models can then be mapped to each

other provided that d is taken to be half the actin monomer size d ¼ 5.4

nm/2¼ 2.7 nm. This mapping suggests that many dynamical features of actin

should already be present in a model that ignores the second protofilament.
Similarly, microtubules may also be modeled using this simple one-filament

model, in a coarse-grained way, provided d ¼ 8 nm/13 ¼ 0.6 nm is equal to

the length of a tubulin monomer divided by 13, which is the average number
of protofilaments in a microtubule (2). Keeping in mind the fact that this

model is applicable to both actin and microtubules, we use a terminology

appropriate to actin to simplify the discussion in the rest of the article.

The actin filament dynamics is studied in terms of two variables n, the
number of ADP subunits, and k, the number of ATP subunits, as shown

in Fig. 1. The dynamics of this system may be represented as a biased

randomwalk in the upper-quarter two-dimensional plane (n, k). For instance,
the addition of one ATP subunit with rate U corresponds to a move in the
upward direction. The removal of ATP subunits with WT corresponds to

a move in the downward direction. The hydrolysis of an ATP subunit results

in an increase in n and decrease in k, both by one unit, which corresponds to
a move in the diagonal direction as shown in the figure. The removal of ADP

subunits can happen only when the cap is zero and therefore corresponds to
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a leftward move along the k ¼ 0 line. Let P(n, k, t) be the probability of

having n hydrolyzed ADP subunits and k unhydrolyzed ATP subunits at
time t, such that l ¼ (n þ k)d is the total length of the filament. This prob-

ability obeys a set of master equations that are derived and solved using

generating functions in Appendix A. From this approach, we obtain various

quantities of interest such as the average filament length hli, the average
velocity of the filament v and that of the cap J, the diffusion coefficient of

the filament D and that of the cap Dc.

RESULTS

Phase diagram

Our model for the dynamics of a single filament with ATP
hydrolysis leads to the following steady-state phases:
a bounded growth phase (phase I), and two phases of

unbounded growth: an intermediate phase (phase II) and
a rapidly growing phase (phase III). In phase I, the average
velocity of the filament vI and the average velocity of the
cap both vanish. Thus, the average filament and cap lengths
remain constant in the long time limit. In phase II, the fila-
ment is growing linearly in time, with a velocity vII, but
the average ATP cap length remains constant as a function
of time. In phase III, the filament as well the ATP cap are
growing linearly in time with a filament velocity vIII and
cap velocity J. The boundary between phases I and II is
the curve of equation vII ¼ 0, and the boundary between
phase II and III is the curve of equation J ¼ 0.

We have carried out simulations of the dynamics of the
length of the filament, using the Gillespie algorithm (27).
According to this algorithm, the time to the next on-, off-,
or hydrolysis-event is computed stochastically at each step
of the simulation. We find that our simulation results agree
with the exact calculations.

The bounded growth phase (phase I)

In the representation of the model as a biased random walk
shown in Fig. 1, there is a regime of parameters for which
the biased random walker converges toward the origin. After
some transient time, the random walker enters a steady state,
where the motion of the walker is confined to a bounded
region containing the origin. In the representation of the
model as a filament, the filament length fluctuates as function
of time around a time-independent average value hli and at
the same time, the cap length also fluctuates as function of
time around a different time-independent average value
hkid. A typical evolution of the total length of the filament
l(t), obtained from our Monte Carlo simulations, is shown
in Fig. 2.

We first discuss the properties of the cap before consid-
ering that of the total length. In the steady state (t / N),
Fk(x ¼ 1) represents the distribution of cap lengths, as
defined in Eq. 41 with

Fkðx ¼ 1Þ ¼ ð1% qÞqk; (1)

where

q ¼ U

WT þ R
: (2)

Since F0 ¼ 1 % q, we see that q has the meaning of the prob-
ability of finding a nonzero cap in the steady state (26). We
consider for the moment only the case q % 1, which corre-
sponds to phases I and II. From Fk(x ¼ 1), we find that the
average number of cap subunits is given by

hki ¼ q

1% q
(3)

and

!
k2
"
¼ q þ q2

ð1% qÞ2
: (4)

FIGURE 1 (a) Schematic diagram showing addition with rate U, removal

with ratesWT andWD, and hydrolysis with rate R: i for the case where the cap
length is nonzero and ii for the case where the cap length is zero. T stands for

ATP (GTP) bound actin (microtubule) subunits while D stands for hydro-
lyzed ADP(GDP) subunits. At the T-D interface shown in i, the hydrolysis
occurs with a rate R. (b) Equivalent representation of the model as a biased

random walk in the upper-quarter two-dimensional plane with rates U to
go up(north), WT to go down (south), R to go south-east, and WD to go

west. TheWD move is only possible along the k¼ 0 (southern boundary) line.
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Note that this expression of hk2i differs from that found in
Stukalin and Kolomeisky (26), which is, we believe, prob-
ably due to a misprint in this reference. As expected, these
quantities diverge when approaching the transition to phase
III when q / 1. The standard deviation of the cap length is

s2
c ¼

!
k2
"
% hki2 ¼

q

ð1% qÞ2
: (5)

The relative fluctuations in the cap size are large, since

s2
c

hki2
¼ 1

q
> 1: (6)

We now investigate the overall length of the filament in
the bounded growth phase. This quantity together with the
distribution of length in the bounded growth phase can be
obtained from the time-independent generating function
G(x, y) as shown in Appendix A. We find

where y& values are defined by

y& ¼ 1

2U

#
U þ WT þ R

&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU þ WT þ RÞ2%4UðWT þ RxÞ

q %
: (8)

From the derivatives of G(x, y), we obtain analytically the
average length
hli using Eq. 47 as

where vII is the shrinking velocity (since vII < 0 in this
regime) of the filament

vII ¼
&
UðWD þ RÞ
WT þ R

%WD

'
d: (10)

The length hli diverges since vII / 0 when approaching
the transition line between phases I and phase II. The length
hli as given by Eq. 9 is plotted in Fig. 3 for the parameters of
Table 1. We compare this exact expression with the result of
our Monte Carlo simulations where the average is computed
using 1000 length values taken from different realizations.
Excellent agreement is found with the analytical expression
of Eq. 9. According to a simple dimensional argument, the
average length hli should scale as %DII/vII, where DII and
vII are the diffusion coefficient and velocity of phase II.
We find that this scaling argument actually holds only close

to the transition point between phase I and II. On the
boundary line between phases I and II, the average filament
velocity vanishes, and hence the filament length is effec-
tively undergoing an unbiased random walk. In such
a case, we expect that on the boundary line hl2i ~ t. We
have also considered the fluctuations of l(t) using the stan-
dard deviation s defined as

s2 ¼
!
l2
"
% hli2; (11)

for which an explicit expression can be obtained from
G(x, y). In Fig. 3, s is shown as a function of U. Note that s
is larger than hli, which corresponds to dynamic-instability-
like large length fluctuations.

In the limit R / 0, ATP hydrolysis can be ignored in the
assembly process. The model is then equivalent to a simple
one-dimensional random walk with rates of growth U and
decay WT. In this case, phases II and III merge into a single

growing phase. We find from Eq. 9 that hli ¼ Ud/(WT %
U), which diverges as expected near the transition to the
growing phase when U x WT. According to the simple
dimensional argument mentioned above, this length must
scale as%D/v in terms of the diffusion coefficient and velocity
of the growing phase (16). This is the case, sinceD¼ d2(Uþ
WT)/2 and v ¼ (U % WT)d < 0 and thus hli ¼ Ud/(WT % U)
near the transition point.

We have also computed the filament length distribution,
P(l), in this phase using Monte Carlo simulations, as shown

in Fig. 4. In the inset, we compare the numerically obtained
distribution with the following exponential distribution

PðlÞ ¼ P0 expð % l=hliÞ; (12)

where hli is given by Eq. 9. In this figure, the distribution
appears to be close to this exponential distribution. For any
exponential distribution, the standard deviation, s, should
equal the mean hli. However as seen in Fig. 3, there is
a difference between s and hli. Hence the distribution cannot
be a simple exponential, which could also have been guessed
from the fact that the expression of G(x, y) is complicated.
The exact analytical expression of the distribution could be
calculated by performing an inverse Z-transform of the
known G(x, y).

In the bounded growth phase, experiments with actin in
Fujiwara et al. (21) report an average length in the 5–20-mm

Gðx; yÞ ¼
ðWT þ RxÞ

#
WD

U
%WD þ R

WT þ R

%
ðx % 1Þ

ðy% yþ Þ½WTðy% % 1Þx þ Rxðy% % xÞ þ WDy%ð1% xÞ(
; (7)

hli ¼

"
q
(
R3 þ WDR2 þ 2R2WT þ W2

TR þ 2WDWTR þ WDW2
T

)

vIIðq% 1ÞðWT þ RÞ2

#

d2 %
&
q2
(
R2 þ 2WTR þ WDWT

)

vIIðq% 1ÞðWT þ RÞ

'
d2; (9)
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range at different monomer concentrations, and experiments
with microtubules of Fygenson et al. (28) report a range
1–20 mm at different temperatures. Neither experiment corre-
sponds precisely to the conditions for which the rates of
Table 1 are known. Thus a precise comparison is not possible
at the moment, although we can certainly obtain with this
approach an average length in the range of microns using
the rates of Table 1 as shown in Fig. 3.

Intermediate phase (phase II)

In the intermediate phase (phase II), the average ATP cap
length remains constant as a function of time, while the fila-

ment grows linearly with time. The presence of this cap leads
to interesting dynamics for the filament. A typical time
evolution of the filament length is shown in Fig. 2. One
can see the filament switching between growth (polymeriza-
tion) and decay (depolymerization) in a way that is
completely analogous to what is observed in the microtubule
dynamics (14).

In this phase II, the average velocity of the filament is

vII ¼ ½U %WTq%WDð1% qÞ(d: (13)

This expression of vII is the same as Eq. 10 except that now
Eq. 13 corresponds to the regime, where vII > 0. The diffu-
sion coefficient in this phase is

FIGURE 3 Average length hli and its standard deviation s in the
bounded growth phase for (a) actin, and (b) microtubule as a function

of the insertion rate, U (lower x axis), and of the concentration of the

free ATP/GTP subunits C (upper x axis). The solid lines represent

analytical expressions of hli (lower curves) and s (upper curves). Solid
symbols represent values obtained from simulations for these quantities.

All the curves and symbols are obtained using values of the rates given

in Table 1.

FIGURE 2 Filament length as a function of time for the three different
phases of the model, as computed using Monte Carlo simulations. The

value of the rates that were used are given in Table 1. Panel a represents

the bounded growth phase (phase I), where a structure of avalanches in

the evolution of the length can be seen. These avalanches correspond
to series of sudden depolymerization events (collapse) followed by slow

polymerization events (rescue). Panel b represents the intermediate phase

(phase II) and the rapidly growing phase (phase III). In the intermediate

phase (II), the dynamics show large length fluctuations as compared to
the rapidly growing phase (III), where the length fluctuations can hardly

be resolved.
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DII ¼ d2

2

&
U þ WTq þ WDð1% qÞ

þ 2ðWD %WTÞðU þ WDqÞ
WT þ R

'
: (14)

The expressions of vII andDII are derived in the Appendix A.
When d equals to half the size of an actin subunit, we recover
exactly the expressions of Stukalin and Kolomeisky (26).

The transition between the bounded growth phase (I) and
the intermediate phase (II) is delimited by the vII ¼ 0 curve.
When going from phase I to II, the average length in Eq. 9
varies as ðU %WDðWT þ R=WD þ RÞÞ%1; and the variance
of the length s2 varies as ðU %WDðWT þ R=WD þ RÞÞ%2.
The transition from the intermediate phase II to the rapidly
growing phase III is marked by a similar behavior. The cap
length diverges as (U % WT % R)%1, and the variance of the
fluctuations of the cap length diverges as (U % WT % R)%2.

Rapidly growing phase (phase III)

In phase III, the length of the ATP cap and that of the fila-
ment are growing linearly with time. Thus, the probability
of finding a cap of zero length is zero in the limit t / N,
that is F0(x ¼ 1) ¼ 0. This also means that the probability

of having a filament of zero length is also zero, i.e.,
P(0,0) ¼ 0.
In this case, Eq. 44 reduces to

dGðx; y; tÞ
dt

¼
&
Uðy% 1Þ þ WT

#
1

y
% 1

%

þ R

#
x

y
% 1

%'
Gðx; y; tÞ: (15)

Using Eqs. 48–51 of Appendix A, one can easily obtain the
following quantities

vIII ¼ ½U %WT(d; (16)

DIII ¼ d2

2
ðU þ WTÞ; (17)

J ¼ ½U % ðWT þ RÞ(d; (18)

Dc ¼ d2

2
ðU þ WT þ RÞ: (19)

Note that these quantities can be obtained from Eqs. 13 and
14 by taking the limit q / 1, which marks the transition
between phase III and phase II. In Fig. 2, the filament length
is plotted as a function of time. Note that in this phase the
velocity and the diffusion coefficient are the same as those
of a filament with no ATP hydrolysis. The physical reason
is that in phase III, the length of the nonhydrolyzed region
(cap) is very large and the region with hydrolyzed subunits
is never exposed.

Effect of force and actin concentration on active
polymerization

The driving force of self-assembly of the filament is the
difference of chemical potential between bound and
unbound ATP actin subunits. Since the chemical potential
of unbound ATP actin subunits depend on the concentration
C of free ATP actin subunits and on the external applied
force f, the rates should depend also on these physical param-
eters. In the biological context, this external force corre-
sponds to the common situation where a filament is pushing
against a cell membrane. For the concentration dependence,
we assume a simple first-order kinetics for the binding of
ATP actin monomers given that the solution is dilute in these
monomers. This means that the rate U of binding of ATP
actin is proportional to C while WT, WD, and R should be
independent of C (29–31). For the force dependence of the
rates, general thermodynamical arguments only enforce
a constraint on the ratio of the rates of binding to that of
unbinding (2,32). A simple choice consistent with this and
supported by microtubule experiments (33) is to assume
that only the binding rate, i.e., U, is force-dependent. A
more sophisticated modeling of the force dependence of
the rates has been considered for instance for microtubules
in Kolomeisky and Fisher (34). All the constraints are then

TABLE 1 Numerical estimates of the rates WT, WD, R, k0, and
subunit length d

k0 (mM
%1 s%1) WT(s

%1) WD(s
%1) R (s%1) d (nm)

Actin 11.6 1.4 7.2 0.3 2.7

Microtubule 3.2 24 290 4 0.6

The parameters for actin are taken from the literature (2,26) and they char-
acterize the barbed end of an actin filament. The parameters for microtubule

hold similarly for the plus end and at 35)C. The rate constant k0 and rateWD

are taken from Howard (2), while the other two rates,WT and R, are deduced
from fitting the zero-force velocity data of Janson et al. (44) and the critical

concentration measurements of Fygenson et al. (28).

FIGURE 4 Filament length distribution in the bounded growth phase for
actin. (a) For U ¼ 1.5 s%1 and (b) for U ¼ 1.6 s%1 with all other parameters

taken from Table 1. The inset shows the same quantities (l versus P(l)) with
P(l) in the log scale. The straight line in the inset is given by Eq. 12.
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satisfied by assuming that U ¼ k0C exp(% fd/kBT), with k0,
WT, WD, and R all independent of the force f and of the
concentration C. We assume that f > 0, so that the on-rate
is reduced by the application of the force. The cap velocity
in the rapidly growing phase(phase III), given by Eq. 18,
can be written in terms of f and C as

Jðf ;CÞ ¼
*
k0Ce

%fd=kBT % ðWT þ RÞ
+
d: (20)

The phase boundary between phase II and phase III is
defined by the curve J(C, f ¼ fc) ¼ 0. Equating the cap
velocity to zero, we obtain the characteristic force,

fc ¼ %kBT

d
ln

&
WT þ R

k0C

'
¼ %kBT

d
ln
C0

C
; (21)

where the concentration C0 is defined as

C0 ¼ ðWT þ RÞ=k0: (22)

Below fc, the system is in phase III. This is also the point
where q ¼ 1.

The force-velocity relation in the intermediate phase is
rewritten, using Eq. 13, as

vIIðf ;CÞ ¼ k0Ce
%fd=kBT

&
WD þ R

WT þ R

'
d %WDd: (23)

The stall force fs is, by definition, the force at which
vII(f ¼ fs, C) ¼ 0. From Eq. 23, we obtain

fs ¼ %kBT

d
ln

&#
WT þ R

WD þ R

%
WD

k0C

'
; (24)

which can be written equivalently in terms of the critical
concentration of the barbed end Ccrit as

fs ¼ %kBT

d
ln

#
Ccrit

C

%
; (25)

where

Ccrit ¼ C0

#
WD

WD þ R

%
< C0: (26)

In the absence of hydrolysis, when R / 0, we have
Ccrit ¼ C0 and Eq. 25 gives the usual expression of the stall
force given in the literature (2,29,30,35)

The velocity of the filament is shown in Fig. 5 b. This figure
shows that for f< fc, the filament is in phase III, and that there
the velocities of the filament with ATP hydrolysis or with-
out are the same. At f ¼ fc, the force-velocity curve changes
its slope, as shown after the vertical line in Fig. 5 (see Fig.
5 b). When the concentration rather than the force is varied,
a similar change of slope is observed at C ¼ C0, which is
accompanied by a discontinuity of the diffusion coefficient
slightly above the critical concentration (26).

For fc < f < fs, the filament is in the intermediate phase,
where the velocities in the presence and in the absence of

ATP hydrolysis differ. The stall force with ATP hydrolysis
is smaller than that in the absence of ATP hydrolysis. In
view of this, a useful conclusion is that it is important to
take into account the ATP hydrolysis for estimating the
velocity of a filament when the force is close to the stall
force. As can easily be shown with the equations above,
the stall force is reduced by the ATP hydrolysis only because
WD > WT.

For f > fs, the velocity of the filament vanishes. It must be
noted that, in this phase, the instantaneous velocity can be
positive or negative, but the average velocity, in the long
time limit, is zero. Another important point to note is that
when the filament is stalled, ATP is still hydrolyzed. This is
analogous with models of molecular motors containing
more than one cycle (36–38). Including the chemical cycle
of ATP hydrolysis, in addition to the mechanical cycle of

FIGURE 5 (a) Steady-state force-velocity relation for a single actin fila-
ment shown for C¼ 1 mM (solid curve); (b) zoom of the force-velocity rela-

tion near the stall force. The vertical lines represent fc and fs as shown in

panel b. For f < fc, the filament is in the rapidly growing phase (III) and

the velocity is given by Eq. 16. In the bounded growth phase (I) the velocity
is zero. In the intermediate phase the velocity is given by Eq. 13. The dash-

dotted line (b, phases I and II) is given by Eq. 16, showing that the stall force
is higher when ATP hydrolysis is neglected.
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addition/removal of subunits, is, for this reason, important in
the context of actin and microtubule models. One could
imagine testing these predictions on the effect of ATP hydro-
lysis on force-velocity relations by carrying out force-velocity
measurements near stalling conditions of abundant ATP or
when ATP is sequestered by appropriate proteins (39).

All these observations can be summarized in a phase
diagram in the coordinates f and C as shown in Fig. 6. As
shown in Fig. 6, when C < C0, the filament is either in the
intermediate phase (II) or in the bounded growth phase (I).
In this region of the phase diagram, the fluctuations of the
filament length are large as compared to the very small fluc-
tuations observed in the rapidly growing phase (III). The
large fluctuations observed in phase I correspond to the
dynamic instability.

In the case of microtubules, we find as shown in Table 2,
C0 ¼ 8.75 mM. This value is rather large when compared
to typical experimental concentrations C x 1 % 10 mM for
microtubules. Thus microtubules are usually found in phases
I and II where the length fluctuations are large and dynamic
instability is commonly observed.

In the case of actin, we find that C0 ¼ 0.147 mM. Typical
experimental actin concentrations are above this estimate;
therefore, at zero force, actin filaments are usually seen in
phase III. This may explain why the dynamic instability is
rarely seen in actin experiments with pure actin.

In comparing our model to experiments, it is important to
keep in mind that only the dynamics of a single end of the
filament is taken into account in the model. If we take into
account the dynamics at both ends, we expect the following
behavior: above the critical concentration for the pointed
end, both ends grow; below the critical concentration of
the barbed end, both ends shrink; and between these concen-

trations, treadmilling occurs. In addition to this, we expect
that near the critical concentrations of the pointed and barbed
end, two small regions of the phase diagram should exist in
which the pointed or barbed end should be in the interme-
diate phase (phase II) described in this article.

When discussing the effect of force on a single actin or
microtubule filament, one important issue is the buckling
of the filament. Since actin filaments have much smaller
persistence length lp than microtubules, actin filaments
buckle easily under external force. Our approach is appro-
priate to describe experiments like that of Footer et al.
(35), where very short actin filaments are used. The length
of the filaments must be smaller than the critical length for
buckling under a force f. This length can be estimated as
lb ¼ p

ffiffiffiffiffiffiffi
k=f

p
with a hinged boundary condition, where k ¼

lpkBT. With lp z 9 mm measured in Isambert et al. (40),
we estimate lb z 603 nm at f ¼ 1 pN. Our discussion of
the force will be applicable only for filaments shorter than lb.

Collapse time

In this new section, we shall study experimentally relevant
questions such as the mean time required for the ATP cap
to disappear or the mean time required for the whole filament
(ATP cap and ADP subunits) to collapse to zero length. We
are interested in the conditions for which these times are
finite. Below we address these questions.

Cap collapse in phases I or II

The dynamics of the cap corresponds to that of a one-dimen-
sional biased random walker with a growth rate U and
a decay rate WT þ R. Here, we calculate the mean time Tk
required for a cap of initial length kd to reach zero length
for the first time. We assume that there is a bias toward the
origin so that WT þ R > U. This time Tk is nothing but the
mean first-passage time for the biased random walker to
reach k ¼ 0, starting from an arbitrary site k in phases I or
II. According to the literature on first passage times, the
equation for Tk is (41–43):

UTkþ 1 þ ðWT þ RÞTk%1 % ðU þ WT þ RÞTk þ 1 ¼ 0:

(27)

WhenWTþ R>U, this recursion relation can be solved (see
Appendix B) with the condition that T0 ¼ 0, and we obtain

Tk ¼ k

WT þ R% U
: (28)

TABLE 2 Estimates of the characteristic concentrations C0

and Ccrit at zero force, and of the characteristic forces fc and fs
at a concentration of 1 mM for actin and 20 mM for microtubule
using the rates of Table 1

C0(mM) Ccrit(mM) fc (pN) fs (pN)

Actin 0.147 0.141 2.916 (at 1 mM) 2.978 (at 1 mM)
Microtubule 8.75 8.63 5.65 (at 20 mM) 5.74 (at 20 mM)

FIGURE 6 Phase diagram as a function of the normalized force fd/kBT
and of the log of the ratio of the ATP subunit concentration C to the charac-

teristic concentration C0 for actin. The phase diagram shows the bounded

growth phase (phase I), the intermediate phase (phase II), and the rapidly
growing phase (phase III). The boundary line between phase II and

phase III is the curve J ¼ 0 and the boundary line between phase I and

phase II is the curve vII ¼ 0.
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This corresponds to the time the random walker takes to
travel a distance k at a constant velocity % J. Note that the
mean first-passage time Tk becomes infinite in the unbiased
case when J ¼ 0 or if the bias is not toward the origin, i.e.,
when WT þ R % U (which would correspond to an initial
condition in phase III) (41).

One can also define an average of the mean first-passage
time with respect to the initial conditions. Averaging over
k and using Eq. 3, one obtains

hTki ¼ U

ðWT þ R% UÞ2
: (29)

The same time can be recovered by considering the average
time associated with the fluctuation of the cap:

hTki ¼
!
k2
"
d2

2Dc
: (30)

This time may be related to the catastrophe rate in the
following way. In Flyvbjerg et al. (16), the catastrophe rate
is defined as the total number of catastrophes observed in
an experiment divided by the total time spent in the growing
phase. Since the growing phase ends when the cap disap-
pears for the first time, we interpret similarly 1/hTki, as an
average collapse frequency of the cap.

Filament collapse in phase I

Now we consider the dynamics of the filament length, which
is described similarly by a two-dimensional biased random
walk converging toward the origin. Here we investigate the
mean time Tn,k required for a filament with an initial state
of n ADP subunits and k ATP subunits to reach zero length
for the first time with an initial condition inside phase I.
Again, this is the mean first-passage time now in a two-
dimensional domain (in the n % k plane, as shown in
Fig. 1) to reach the origin (n¼ 0, k¼ 0) starting from an arbi-
trary n and k. This mean first-passage time Tn,k obeys the
following set of equations (41). When k > 0, for all n, the
equation is

UTn;kþ 1 þ WTTn;k%1 þ RTnþ 1; k%1 % ðU þ WT þ RÞTn;k

þ 1 ¼ 0: ð31Þ

For k ¼ 0 and n > 0 we have a special equation

UTn;1 þ WDTn%1;0 % ðU þ WDÞTn;0 þ 1 ¼ 0; (32)

and we also have the condition T00 ¼ 0.
The simplest way to solve these equations is to guess by

analogy with the one-dimensional case that the solution
must be a linear function of n and k. This leads to a simple
Ansatz of the form Tn,k ¼ An þ Bk, which in fact gives
the exact result, as can be shown rigorously. Substituting
this in Eq. 31 and Eq. 32, we can solve for unknowns A
and B. This leads to

Tn;k ¼ nd

%vII
þ kd

%vII

#
WD þ R

WT þ R

%
; (33)

where vII is the velocity of the intermediate phase given
by Eq. 13. Note that vII < 0 here, since the initial condition
is within phase I.

We first examine some simple particular cases of Eq. 33.
As we approach the intermediate phase boundary vII / 0,
Tn,k /N as expected. WhenWD ¼N, Tn,k ¼ k/(WT þ R%
U)¼ Tk, which is the cap collapse time calculated in the one-
dimensional case. When WD ¼ N, the whole filament
collapses immediately after the cap has disappeared for the
first time, i.e., after a time Tk. When R / N, ATP subunits
instantaneously become ADP subunits and we obtain
another simple result Tn,k ¼ (nþ k)/(WD % U). We have also
compared the prediction of Eq. 33 with Monte Carlo simula-
tions in Fig. 7 and we have found an excellent agreement.

We can also define an average of the above mean first-
passage time where the average is performed over initial
lengths of cap and unhydrolyzed region. Averaging over k
and n in Eq. 33 we obtain

hTn;ki ¼
U
(
R2 þ WDR þ WTR þ W2

D

)

ðUR%WDWT %WDR þ UWDÞ2
: (34)

The inverse, 1/hTn, ki, can be called the collapse frequency of
the filament. The filament collapse frequency and the cap
collapse frequency are shown in Fig. 8 as a function of U
and C for the cases of actin and microtubule using parameters
of Table 1. Both frequencies are close to each other because
the rate WD is large compared to other rates (see Table 1).
This figure also shows that as the frequency of collapse is
increased, the rate U decreases and so the filament length is
decreasing, which is expected (16). The behavior of the
collapse frequency as function of the growing velocity in

FIGURE 7 Mean time taken by a filament of initial length (n þ k)d to
collapse to zero length. Curves are given by Eq. 33 and points are obtained

from a Monte Carlo simulation for different values of n and k. From bottom

to top (n, k) ¼ (990, 10), (750, 250), (500, 500), and (200, 800).
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the absence of force agrees with Janson et al. (44). The
decrease of the rate of monomer addition is in practice caused
by either the application of a force or a lowering of the
concentration. Thus the application of force may be seen as
a general mechanism to regulate the dynamic instability.

In the opposite limit, when R/WD / 0, one can also
understand the result physically from the following argu-
ment. When the filament collapses, the first event is the
disappearance of the cap and therefore the first contribution
to the collapse time is the mean time required for the cap to
disappear, Tk, as obtained from Eq. 28. Once the cap has dis-
appeared, assuming thatWD is very large, ADP subunits start
depolymerizing until the next ATP subunit addition takes
place. The mean time needed for an ATP subunit addition
to take place is 1/U. Once an ATP subunit is added, one
has to wait an average time of T1 for the cap to disappear
again. This cycle of ATP subunit addition and depolymeriza-

tion repeats many times. The number of times this cycle
occurs, starting with a filament of nADP subunits, is roughly
n=ðWD=UÞ. But one also has to take into account the increase
in ADP subunits as a result of ATP hydrolysis, which is done
by subtracting RT1 from n=ðWD=UÞ. This leads to the
following approximate expression for Tn,k,

Tn;kxTk þ
&
1

U
þ T1

'
n

ðWD
U % RT1

); (35)

x
nd

%vII
þ kd

%J
; (36)

where J ¼ (U % WT þ R)d is the cap velocity in the rapidly
growing phase. This solves Eqs. 31 and 32 in the limit
R/WD / 0 and agrees reasonably well with the Monte Carlo
simulations.

DISCUSSION AND CONCLUSION

In this article, we have studied a model for the dynamics of
growth and shrinkage of single actin/microtubule filaments,
taking into account the ATP/GTP hydrolysis that occurs in
the polymerized filament. We find three dynamical phases
with different properties of the ATP/GTP cap and the fila-
ment: a bounded growth phase, an intermediate phase, and
a rapidly growing phase. For each phase, we have calculated
the steady-state properties of the nonhydrolyzed cap and of the
filament and we have investigated the role of an external force
(f) applied on the filament during polymerization and of the
monomer concentration (C), leading to a f-C phase diagram.
We have also calculated the collapse time, which is the time
needed for the cap or the filament to completely depolymerize.

In batch experiments, the total amount of monomers (free-
þpolymerized) is constant. This constraint leads to a different
dynamics than that described in this model, in which the
monomer concentration remains constant. Indeed, with
a finite amount of monomer present in bulk experiments,
the intermediate and rapidly growing phase are not sustain-
able forever. If only a single filament is present, it would
have to eventually settle in the bounded growth phase. For
this reason, the bounded growth phase is a very important
phase for analyzing batch experiments. It would be inter-
esting to probe experimentally the fluctuations of length at
a level of a single filament in the bounded growth phase.
Such an experiment could provide insights into the dynamic
instability and possibly into the structure of the cap itself,
which is very difficult to probe experimentally.

Another important conclusion is the role of ATP/GTP
hydrolysis in determining the stall force of the filament:
the effect of hydrolysis always reduces the value of the stall
force. Dynamic instabilities are in general not observed with
actin filaments when no force is applied to the filament.
However, in recent experiments (23,24), it has been found
that the presence of ADF/cofilin leads to a bounded growth
phase even at zero force where actin filaments exhibit large

FIGURE 8 Collapse frequencies for actin and microtubule (MT) as func-

tion of the rate of addition of monomers U (lower x axis) and of the concen-
tration C (upper x axis): (Solid line) Represents the collapse frequency of the
filament given by 1/hTn, ki, the inverse of the time given in Eq. 34. (Dashed
line) Represents the collapse frequency of the cap given by 1/hTki, the
inverse of the time given in Eq. 29.
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length fluctuations. In the absence of binding proteins, a
natural way to regulate the dynamic instability and the length
of the filament is through the application of force.

The intermediate phase is a phase where the filaments grow
at a constant velocity with a finite ATP/GTP cap. This is the
phase that is, in general, observed in a cell. There are large
length fluctuations of the cap in this phase but the length fluc-
tuations are not as large as the average length. Thus, there is no
true dynamic instability in this phase but we give predictions
for the typical time of the collapse of the cap. Finally, the
growth phase corresponds to the case where both the filament
and the cap grow at a constant velocity.

One of the limitations of our work is that we considered
a single protofilament. This does not seem to be an important
issue for actin filaments where the length difference between
the two protofilaments is always small and of the order of an
actin monomer. For microtubules, the detailed polymeriza-
tion mechanism seems to be very complex and this certainly
plays an important role on the way the force is distributed
between protofilaments (45). Recent experiments have also
considered the maximum force that can be generated by
a bundle of parallel actin filaments (35). Our results raise
interesting questions about the role of ATP hydrolysis in
this case.

Our work could be extended in several directions. In the
biological context, actin or microtubule polymerization is
regulated by capping proteins and it would be important to
understand quantitatively the regulation mechanism and to

incorporate them in our model. This is, for example, the
case for motors of the Kin-13 family that have been found
to interact with microtubules and induce filament depolymer-
ization (46). So far, we have mainly considered the polymer-
ization kinetics, but in general, there is a complex interplay
between the mechanical properties of the filaments and the
polymerization kinetics, which we plan to explore in future
work.

APPENDIX A: CALCULATIONS USING THE
GENERATING FUNCTION APPROACH

Let P(n, k, t) be the probability of having n hydrolyzed ADP subunits and

k unhydrolyzed ATP subunits at time t, such that l ¼ (n þ k)d is the
total length of the filament. It obeys the following master equation: For

k > 0 and n R 0 we have

dPðn; k; tÞ
dt

¼ UPðn; k % 1; tÞ þ WTPðn; k þ 1; tÞ þ RP

* ðn% 1; k þ 1; tÞ % ðU þ WT þ RÞPðn; k; tÞ:
ð37Þ

When n ¼ 0 in Eq. 37, P(% 1, k þ 1, t) is set equal to zero. For k ¼ 0 and

n R 1, we have

dPðn; 0; tÞ
dt

¼ WDPðn þ 1; 0; tÞ þ WTPðn; 1; tÞ

þ RPðn% 1; 1; tÞ % ðU þ WDÞPðn; 0; tÞ:
(38)

If k ¼ 0 and n ¼ 0, we have

dPð0; 0; tÞ
dt

¼ WTPð0; 1; tÞ þ WDPð1; 0; tÞ % UPð0; 0; tÞ:

(39)

The time derivative d=dt has the meaning of a partial time derivative at

constant n and k. The sum of the probabilities is normalized to 1 such that

XN

n¼ 0

XN

k¼ 0

Pðn; k; tÞ ¼ 1: (40)

We define the following generating functions

Fkðx; tÞ ¼
X

nR0

Pðn; k; tÞxn; (41)

Hnðy; tÞ ¼
X

kR0

Pðn; k; tÞyk; (42)

Gðx; y; tÞ ¼
X

nR0

X

kR0

Pðn; k; tÞxnyk: (43)

Summing over n and k in Eq. 37 and using Eqs. 38, 39, and 43, one obtains

Similarly one can also write down equations for Fk and Hn. This equation

contains F0, which is coupled to all the Fk. For k > 0,

dFkðx; tÞ
dt

¼ UFk%1ðx; tÞ þ ðWT þ RxÞFkþ 1ðx; tÞ

% ðU þ WT þ RÞFkðx; tÞ; (45)

and for k ¼ 0,

dF0ðx; tÞ
dt

¼
#
WD

#
1% 1

x

%
% U

%
F0ðx; tÞ þ ðWT

þRxÞF1

(
x; t

)
þWDP

(
0; 0; t

)#
1% 1

x

%
: ð46Þ

Solving this set of equations we shall derive a formula for G(x, y, t). From
G(x, y, t), we calculate the following quantities:

The average length

hli ¼ ½hni þ hki(d

¼ d

#
vGðx; 1; tÞ

vx

%

x¼ 1

þ d

#
vGð1; y; tÞ

vy

%

y¼ 1

; (47)

the velocity of the filament

dGðx; y; tÞ
dt

¼
&
Uðy% 1Þ þ WT

#
1

y
% 1

%
þ R

#
x

y
% 1

%'
Gðx; y; tÞ %

&
WT

#
1

y
% 1

%
þ R

#
x

y
% 1

%
þ WD

#
1% 1

x

%'
F0ðx; tÞ

þ WD

#
1% 1

x

%
Pð0; 0; tÞ: ð44Þ
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v ¼ lim
t/N

dhli
dt

¼ d lim
t/N

v

vx

#
dGðx; x; tÞ

dt

%

x¼ 1

; (48)

and the diffusion coefficient of the filament length

D ¼ lim
t/N

1

2

d

dt

(!
l2
"
% hli2

)

¼ d2 lim
t/N

h1
2

v2

vx2

#
dGðx; x; tÞ

dt

%
þ 1

2

v

vx

#
dGðx; x; tÞ

dt

%

%
#
vGðx; x; tÞ

vx

%
v

vx

#
dGðx; x; tÞ

dt

%'

x¼ 1

:

(49)

The average velocity of the cap is

J ¼ d lim
t/N

dhki
dt

¼ lim
t/N

v

vy

#
dGð1; y; tÞ

dt

%

y¼ 1

; (50)

and the diffusion coefficient of the cap is

Dc ¼ d2 lim
t/N

1

2

d

dt

(!
k2
"
% hki2

)

¼ d2 lim
t/N

h1
2

v2

vy2

#
dGð1; y; tÞ

dt

%
þ 1

2

v

vy

#
dGð1; y; tÞ

dt

%

%
#
vGð1; y; tÞ

vy

%
v

vy

#
dGð1; y; tÞ

dt

%'

y¼ 1

:

(51)

Calculation of F(x ¼ 1, t / N) in phases I and II

In the steady state, (t/N), the cap distribution in phases I and II becomes
time-independent and hence (dFk/dt)x¼1¼ 0. In this case, Eqs. 45 and 46 can

be written, for k > 0, as

0 ¼ UFk%1 þ ðWT þ RÞFkþ 1 % ðU þ WT þ RÞFk;

(52)

and for k ¼ 0,

0 ¼ ðWT þ RÞF1 % UF0; (53)

where we denote for short, Fk ¼ Fk(x¼ 1, t/N). The solution of Eq. 52 is

of the form Fk ¼ qkF0. If we substitute this back into Eq. 52, we get
a quadratic equation in q

ðWT þ RÞq2 % ðU þ WT þ RÞq þ U ¼ 0: (54)

The two solutions are q ¼ U/(WT þ R) and q ¼ 1, but we can rule out

q¼ 1 using the normalization condition
PN

k¼0

Fk ¼ 1. In phases I and II,WT þ

R > U and therefore q < 1. Using the normalization condition, we obtain

Fk ¼ ð1% qÞqk; (55)

which is Eq. 1.

Calculation ofG(x, y) in the bounded growth phase
(phase I)

We now explain how to calculateG(x, y) in the bounded growth phase, using
a technique of canceling apparent poles (42,43). Since we are interested in

the steady-state properties of the bounded growth phase, the time derivative

of G on the left-hand side of Eq. 44 is zero, which leads to

where Fk(x) and P(0, 0) are unknowns. By definition

Gðx; yÞ ¼
X

nR0

X

kR0

Pðn; kÞxnyk;

since the P(n, k) are bounded numbers, G(x, y) is an analytic function for

0 % jxj % 1 and 0 % jyj % 1. To guarantee the analyticity of the function
G(x, y), the zero of the denominator of Eq. 56,

must also be a zero of the numerator. This implies that

F0ðxÞ ¼
WDPð0; 0Þy%ð1% xÞ

Rxðy% % xÞ þ WTxðy% % 1Þ %WDy%ðx % 1Þ
: (57)

The normalization condition, namely G(x¼1, y¼1) ¼ 1, then fixes the

value of P(0, 0) as

Pð0; 0Þ ¼ 1% U

WD

#
WD þ R

WT þ R

%
: (58)

After substituting Eqs. 57 and 58 into Eq. 56, we obtain the expression of
G(x, y) given in Eq. 7.

Velocity and diffusion coefficient
in the intermediate phase (phase II)

We recall the definition of Fk(x, t) given in Eq. 43,

Fkðx; tÞ ¼
X

nR0

Pðn; k; tÞxn; (59)

and we recall that Fk with no argument is a short notation for Fk (x ¼ 1,

t / N). From this, we introduce

akðtÞ ¼
#
vFkðx; tÞ

vx

%

x¼ 1

(60)

so that hnðtÞi ¼
P

kR0 Pðn; k; tÞn ¼
P

kR0 akðtÞ.

By taking a derivative with respect to x in Eqs. 45 and 46, one obtains the
equations of evolution of ak(t): for k > 0,

Gðx; yÞ ¼ F0ðxÞ½Rxðy% xÞ þ WTxðy% 1Þ %WDyðx % 1Þ( %WDPð0; 0Þyð1% xÞ
x½ % Uy2 þ ðU þ WT þ RÞy% Rx %WT(

; (56)

y ¼ y% ¼ 1

2U

#
U þ WT þ R%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU þ WT þ RÞ2%4UðWT þ RxÞ

q %
;
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dakðtÞ
dt

¼ Uak%1ðtÞ þ ðWT þ RÞakþ 1ðtÞ

% ðU þ WT þ RÞakðtÞ þ RFkþ 1ðx ¼ 1; tÞ
(61)

and for k ¼ 0,

da0ðtÞ
dt

¼ %WDF0ðx ¼ 1; tÞ % Ua0ðtÞ þ ðWT þ RÞa1ðtÞ

þ RF1ðx ¼ 1; tÞ: ð62Þ

As shown in Stukalin and Kolomeisky (26), there is a solution of these
recursion relations in the long time limit in the form of ak(t) ¼ Mkt þ Bk,

where Mk and Bk are time-independent coefficients. After substituting

this equation into Eqs. 61 and 62, and separating terms which are time-
dependent from terms that are not time-dependent, one obtains separate

recursion relations for Mk and Bk. The recursion relation of Mk is identical

to that of Fk obtained in Eqs. 52 and 53. Using Eq. 55, the solution can

be written as Mk ¼ vII(1 % q)qk/d ¼ vIIFk/d. The recursion relation of Bk

is for k > 0,

Mk ¼ UBk%1 þ ðWT þ RÞBkþ 1 % ðU þ WT þ RÞBk

þ RFkþ 1; ð63Þ

and for k ¼ 0,

M0 ¼ %WDF0 % UB0 þ ðWT þ RÞB1 þ RF1: (64)

These recursion relations can also be solved with the result

Bk ¼ B0q
k þ

&
WDð1% qÞ
WT þ R

'
kqk: (65)

To characterize the intermediate phase, it is convenient to rewrite the

evolution equation for the generating function G(x, y, t) of Eq. 44 using
the fact that P(0,0,t / N) ¼ 0 in this phase, in the form of an evolution

equation for ~Gðx; tÞ ¼ Gðx; x; tÞ as

d~Gðx; tÞ
dt

¼ aðxÞ~Gðx; tÞ þ bðx; tÞ; (66)

where a(x) ¼ U(x % 1) þ WT(1/x % 1) and b(x, t) ¼ (1 % 1/x)(WT %
WD)F0(x, t). With this notation, the velocity defined in Eq. 48 is

v ¼ d lim
t/N

v

vx

#
d~Gðx; tÞ

dt

%

x¼ 1

¼ d½a0ð1Þ þ b0ð1; t/NÞ(;

(67)

where the prime denotes derivatives with respect to x. Substituting the expres-
sions of a(x) and b(x, t) into this equation, it is straightforward to obtain the

velocity v¼ vII characteristic of the intermediate phase which is Eq. 13. Simi-

larly, using Eqs. 49 and 66, the diffusion coefficient can be written as

D ¼ d2

2
lim
t/N

*
a00ð1Þ þ b00ð1; tÞ þ a0ð1Þ þ b0ð1; tÞ

% 2~G0ð1; tÞb0ð1; tÞ
+
; (68)

where

~G0ð1; tÞ ¼
,v~Gðx; tÞ

vx

%

x¼ 1

¼ hnðtÞi þ hki;

¼ vt þ 1

1% q

&
B0 þ U þ WDq

WT þ R

'
:

(69)

After substituting Eq. 69 into Eq. 68 and simplifying, the terms linear in time

and the term containing the unknown parameter B0 cancel out in the expres-
sion of the diffusion coefficient, and we finally obtain D ¼ DII, which is

given in Eq. 49.

APPENDIX B: CAP COLLAPSE TIME TK

To solve the recursion relation for Tk of Eq. 27, we perform a Z-transforma-
tion defined by

~TðzÞ ¼
X

kR0

Tkz
%k: (70)

After using the initial condition T0 ¼ 0, we obtain

~TðzÞ ¼ ð1 þ UT1ð1% zÞÞz
Uð1% zÞ2ðq%1 % zÞ

(71)

where q%1 ¼ (WT þ R)/U. By definition, ~TðzÞ is analytic for all values of

jzj > 1. Since we are interested in the case WT þ R > U, the numerator in
Eq. 71 must vanish to ensure that ~TðzÞ is analytic at z ¼ q%1. This condition

determines the unknown T1 ¼ 1/(WT þ R % U). Now Tk can be obtained by
an inverse Z-transform as

Tk ¼ 1

2pi
# ~TðzÞzk%1dz ¼ 1

2pi
#

zkdz

Uð1% zÞ2ðq%1 % 1Þ

¼ k

WT þ R% U
:

(72)
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