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Abstract – Kelly’s criterion is a betting strategy that maximizes the long-term growth rate, but
which is known to be risky. Here, we find optimal betting strategies that gives the highest capital
growth rate while keeping a certain low value of risky fluctuations. We then analyze the trade-off
between the average and the fluctuations of the growth rate, in models of horse races, first for two
horses then for an arbitrary number of horses, and for uncorrelated or correlated races. We find an
analog of a phase transition with a coexistence between two optimal strategies, where one has risk
and the other one does not. The above trade-off is also embodied in a general bound on the average
growth rate, similar to thermodynamic uncertainty relations. We also prove mathematically the
absence of other phase transitions between Kelly’s point and the risk-free strategy.

Copyright c© 2020 EPLA

Introduction. – Developed in 1956 by Bell Labs scien-
tist John Kelly, Kelly’s criterion applied the newly created
field of information theory to gambling and investment [1].
Largely popularized in books [2], this criterion allows a
gambler (or investment fund) to fix what proportion of
bankroll should be risked on a given bet. It essentially ex-
ploits side information to maximize the expected geomet-
ric growth rate of a capital. This work was precursor to the
growth optimal portfolio theory, which applied these ideas
to capital market [3]. The ensemble of optimal investment
strategies forms an efficient border [4], or equivalently a
Pareto front [5,6], which is a term used in engineering and
economics to call the set of designs that represent best
trade-offs between different conflicting requirements.

Recently, there has been a surge of interest in applying
insights from optimal gambling theory and economy to
biology. Kelly’s work led to an essential clarification of the
concept of information value in biology [7,8], which was
very helpful to understand strategies used by biological
systems in a fluctuating environment. In particular the
bet-hedging strategy turned out to be precisely an optimal
strategy of the Kelly type [9,10].

Here, we focus on betting strategies of Kelly’s type
and draw inspiration from the field of Stochastic

Thermodynamics, a recent branch of Thermodynamics
with deep links to information theory, and with already
several works specifically applied to gambling or betting
problems [11–14]. A recent and an active line of re-
search concerns the thermodynamic uncertainty relations
[15–18], which capture important trade-offs in Thermody-
namics. In this letter, we explore novel implications of
these ideas for gambling models. We emphasize at this
point that a background on Stochastic Thermodynamics
is not required to understand this letter, since we only rely
on basic notions of probability and optimization theory.

To gain insight into the trade-off present in gambling,
we study the efficient border of Kelly’s model, and we find
that it extends to a region of negative growth, never dis-
cussed in the literature to our knowledge, corresponding
to catastrophic betting strategies. Inspired by works on
optimal protocols [19–21], and specifically on phase tran-
sitions among optimal protocols [22], we identify similar
phase transitions in optimal betting strategies. We first
prove such a result for uncorrelated races, and involving
only two horses, which we then generalize to an arbitrary
number of horses and to correlated races. In addition, we
also give a general proof of the convexity in the most use-
ful part of the front (positive part of the trade-off branch),
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which rules out the existence of further phase transitions
on that branch.

Kelly’s horse races. – Let us recall here the main
features of Kelly’s horse race [1,23]. This race involves
M horses, which are numbered as 1, 2, . . . , M . The odds
paid by the bookmaker when the horse x wins is ox, and
the probability for this to happen is px. A gambler can
distribute his bets on the different horses, let bx be the
fraction of the bet set on horse x, so that

∑M
x=1

bx = 1.
For all x, bx > 0, because the gambler bets on all horses
but only makes money from the horse x that wins.

A key feature of the model is that this dynamics is re-
peated, since all the money gained in one race is reinvested
in the next race. Thus, the capital CN+1 of the gambler
after N + 1 races is related to his capital after N races,
CN , by the expression

CN+1 = oxbxCN , with probability px. (1)

The important quantity is the long-term growth rate of
the capital which has the form

lim
N→∞

1

N
lnCN =

∑

x

px ln(oxbx), (2)

where the equality follows from the law of large numbers.
Let us introduce the random variable Wx = ln(oxbx) which
describes the contribution of horse x to this growth rate.
Its average with respect to the probability density px, is
the long-term growth rate denoted 〈W 〉.

Kelly’s strategy is defined from the optimization of this
average growth rate over the betting strategy defined by
bx. A simple calculation given the constraint

∑

x bx = 1
leads to the proportional betting strategy bx = px. This
particular solution is independent of the odds ox, but if
there was a track take, the optimal solution would depend
on both ox and px [1].

Games of this type can be easily simulated in a com-
puter using a random number generator to choose a
winning horse for each race according to probability distri-
bution px and using eq. (1) to compute gambler’s capital1.
The growth of the capital is exponential and Kelly’s strat-
egy dominates on long times all non-optimal strategies as
shown in fig. 1.

A central result of Stochastic Thermodynamics, namely
fluctuation relations, can be obtained in a few steps for
this model [14]. Using the definition of W , and given that
b = p for Kelly’s strategy, we obtain

〈e−W 〉 =
∑

x

px
1

oxpx
=

∑

x

1

ox
= 1, (3)

where in the last equality, we have used the normalization
of the distribution rx = 1/ox valid when there is no track

1See Supplementary Material Supplementarymaterial.pdf (SM)
for details on simulations, on the exact solution for two horses, and
on the analysis of the Pareto front.

Fig. 1: Logarithm of the capital of the gambler vs. the number
of races, for the optimal strategy (Kelly’s) (thick red line) and
for a selection of three non-optimal strategies (thin blue lines).

take (fair odds). By Jensen’s inequality, eq. (3) implies
〈W 〉 ≥ 0, which also follows from 〈W 〉 = D(p | r) ≥ 0
where D(p | r) denotes the Kullback-Leibler (KL) diver-
gence between the distributions p and r [23]. This fluc-
tuation relation (3) can be generalized for an arbitrary
strategy of the gambler, not necessarily that of Kelly, and
when the odds are not necessarily fair, by introducing the
decomposition W̃x = Wx + Ix, where Wx = ln(oxbx) as
above, W̃x = ln(oxpx) and Ix = ln(px/bx). In this way,
W̃ represents the growth rate of the gambler according to
Kelly’s strategy and I measures the difference between the
gambler’s strategy and that of Kelly’s in a KL sense, since
〈I〉 = D(p | b). We have then

〈e−W̃ 〉 = 〈e−W−I〉 = Λ, (4)

with Λ =
∑

x 1/ox. In the same way that eq. (3) is the
analog of Jarzynski equality, eq. (4) is similar to its gen-
eralization for absolutely irreversible processes [24]. By
Jensen’s inequality, the inequality 〈W 〉 ≥ −〈I〉− ln Λ, fol-
lows which reduces to 〈W 〉 ≥ 0 in the particular case of
Kelly’s strategy with fair odds. Note that in the general
case, 〈W 〉 can a priori be of any sign.

Mean-variance trade-off: choice of utility func-

tion. – Kelly’s strategy focuses on the maximization of
the growth rate at the price of overlooking risk. Al-
though bankruptcy is absent in Kelly’s scenario because
the growth of the capital is geometric instead of arith-
metic, the fluctuations of the capital are large as shown
in fig. 1. This problem has been widely recognized in
the gambling community. In practice gamblers and in-
vestors know that optimal Kelly can be “too risky”; and
that “fractional Kelly” should be preferred, which devi-
ates from the optimal solution but reduces the effective
variance of the stochastic growth [3].

In the same spirit, we study here the optimal bet-
ting strategy that gives the highest capital growth rate
while keeping a certain low value of risky fluctuations
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and analyze the corresponding trade-off between risk and
gain. A similar idea is behind the mean-variance analy-
sis introduced by Markowitz optimization [4]. In contrast
with Markowitz optimization however, which considers the
mean and variance of the capital return in one race, we
consider here the mean and the variance of the (long-term)
growth rate of the capital after many races. This im-
portant conceptual difference allows us to recover Kelly’s
point as a special case of our analysis, whereas Kelly’s
point could not appear as a limiting case of Markowitz’s
optimization for this reason. Hence, our utility function is
a linear combination of the mean and standard deviation
of the growth rate, namely 〈W 〉 and σW :

J̃ = α〈W 〉 − (1 − α)σW , (5)

with 0 ≤ α ≤ 1. In practice, we use the modified utility
function

J = α〈W 〉 − (1 − α)σW + λ
∑

x

bx, (6)

where λ is a Lagrange multiplier associated to the normal-
ization of the bets. An optimization of J with respect to
bx leads to λ = −α. By reporting this into eq. (6), the
optimal bets bx are solutions of

px − bx =
γ

σW
px[ln(oxbx) − 〈W 〉], (7)

where γ = (1−α)/α. As expected, when α = 1 (γ = 0), we
recover the proportional betting of Kelly’s strategy, which
maximizes 〈W 〉. Instead when α = 0 (γ → ∞), we obtain
the null strategy also called the risk-free strategy, because
in this case 〈W 〉 = σW = 0. Between these two values,
the strategy of the gambler is described as mixed since it
combines aspects associated to the optimization of 〈W 〉
and σW .

Exact solution for two horses. – Before embarking
on the full problem with an arbitrary number of horses,
it is instructive to analyze the fully solvable case of two
horses. Let the probability that the first horse wins (re-
spectively, loses) be p (respectively, 1−p); the bet and the
odd on the first (respectively, second) horse are b and 1/r
(respectively, 1− b and 1/(1− r)) and let us introduce the
parameter σ =

√

p(1 − p).
From the optimization of J , we obtain the optimal strat-

egy b±:
b± = p ± γσ, (8)

where the + (respectively, −) sign corresponds to an over-
betting (respectively, underbetting) strategy with respect
to Kelly’s strategy where b = p.

By reporting the optimal bet given by eq. (8) into the
expression of J , one obtains the efficient border. As shown
in fig. 2, this border has two branches which meet at
Kelly’s point. When p < r the lower blue solid line is the
trade-off branch associated with b+, while the upper red
solid line is the non–trade-off branch, associated with b−.

Fig. 2: Trade-off branch (lower blue solid line) and non–trade-
off branch (upper red solid line) in the plane (〈W 〉, σW ) for
two horses and for the parameters (p = 0.2, r = 0.4). The two
branches meet at the red square (Kelly’s strategy), and the
blue circle represents the null strategy.

The roles of b− and b+ exchange when instead p > r. Let
us first focus on the region where 〈W 〉 ≥ 0.

We find that the slope of the Pareto border is

dσW

d〈W 〉

∣

∣

∣

∣

γ

=
σ

p − b
, (9)

where b is equal to b− when r < p (see SM). Therefore
the slope of the Pareto border is infinite at Kelly’s point
where b± = p; while it reaches a finite value near the null
strategy, namely

dσW

d〈W 〉

∣

∣

∣

∣

γc

=
1

γc
=

σ

|p − r|
. (10)

This signals a phase transition at this critical value γc,
where the optimal strategy changes from the null strategy
to a mixed strategy. As a result, the optimal J vs. γ
changes from zero when γ ≥ γc (null strategy) to a non-
zero value when γ ≤ γc (mixed strategy). For two horses,
such a plot is similar to what is shown for three horses in
the inset of fig. 3.

To prove the existence of the phase transition, we have
checked that the border is convex near the null strategy.
It is indeed the case since

d2σW

d〈W 〉2

∣

∣

∣

∣

γ=γc

=
r(1 − r)

σ2γ3
c

> 0. (11)

In the rest of this paper, we now focus on the general case
for an arbitrary number of horses.

Numerical results. – Let us now explain how to ob-
tain the Pareto front from a numerical optimization of the
utility function using a simulated annealing algorithm, as
illustrated in fig. 3 for the case of three horses. Similarly
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Fig. 3: Pareto borders for 3horses obtained from numerical
optimization of the utility functions J1, J2, J3 and J4 (colored
solid lines), together with a cloud of points generated by ran-
domly choosing bets satisfying all relevant constraints. Param-
eters are p1 = 0.2, p2 = 0.6, r1 = 0.4 and r2 = 0.2 for the first
two horses. Inset: J1 vs. γ along the trade-off branch (i.e., on
the dark blue border).

to the case of two horses case, the lower and upper branch
correspond to different optimization problems. The lower
branch is formed by bets that maximize the growth rate
〈W 〉 for a given value of the fluctuations σW , whereas the
upper branch corresponds to maximal fluctuations σW for
a given value of the growth rate 〈W 〉.

For the lower branch, there are two regions where 〈W 〉
is either positive or negative. In the former case, the front
is convex and can be recovered by the maximization of the
utility function J = J1 defined in eq. (5). In contrast, in
the negative 〈W 〉 region, the front is concave and a differ-
ent strategy is needed. Following [22], we use a quadratic
objective function

J2 = −(〈W 〉 − W0)
2 − kσW . (12)

We use a global minus sign in order to keep the same max-
imization procedure, although we wish in fact to minimize
both the value of σW and the distance to a target value
W0 for the growth rate. By varying the target value W0

from 0 to a sufficiently negative value we can draw the
negative lower branch. Parameter k weighs the impor-
tance between the constraint of 〈W 〉 being close to W0 or
minimizing the value of the fluctuations. We took k = 0.5
although other moderate values would do.

Similarly, the upper branch with positive 〈W 〉 is con-
cave and corresponds to the maximization of the objective
function

J3 = α〈W 〉 + (1 − α)σW , (13)

where the plus sign before σW now ensures the maximiza-
tion of the fluctuations in contrast with the lower branch
case. The upper branch with negative 〈W 〉 appears almost
straight for large negative values of 〈W 〉. Thus, although
J3 could still be used there, further numerical precision

can be achieved by using a modified objective function

J4 = −(〈W 〉 − W0)
2 + kσW , (14)

where again the plus sign in front of σW corresponds to
the maximization of fluctuations.

General conclusions can also be obtained for this model
near special points. Near Kelly’s point, we find that the
slope of the Pareto border is always vertical. This means
that in practice if one is willing to sacrifice a small amount
of the average growth rate, one can lower the fluctuations
significantly, thereby accessing “safer” strategies such as
the blue curves in fig. 1. Near the null strategy, we find a
similar phase transition as in the two horses case, which
we now analyze in more details.

Mean-variance trade-off: bounds. – We recall
that rx := 1/ox and we assume a fair game for which
∑

x rx = 1. Then let qx := rx/px, so that the first two
moments of q are 〈q〉 = 1 and σ2

q := 〈q2〉− 〈q〉2 = 〈q2〉− 1.
Let us focus on the branch of positive 〈W 〉. In this case,
we find the following inequality:

σW ≥
〈W 〉

σq
, (15)

which has a similar structure as thermodynamic uncer-
tainty relations [15,25], and which captures a general
trade-off between the mean and the variance of the growth
rate.

The proof goes as follows: we consider the quantity
σ2

qσ2
W , since σ2

q = 〈q2〉 − 1, we have using the Cauchy-
Schwarz inequality

σ2
qσ2

W = 〈(q − 1)2〉〈(W − 〈W 〉)2〉,

≥ 〈(q − 1)(W − 〈W 〉)〉2;

≥ (〈qW 〉 − 〈W 〉)2 , (16)

Now since 〈qW 〉 =
∑

x rx/bx log(bx/rx) = −D(r|b) ≤ 0,
then eq. (15) follows. This inequality is saturated when
bx = rx, which corresponds to the null strategy.

Similar inequalities can be derived using instead other
relevant Kullback-Leibler divergences, such as D(b|p) or
D(r|p). To exploit the first divergence, we introduce the
ratio sx = bx/px which is also a normalized probability
distribution similar to q, with a second moment σ2

s . Then,
following the same steps, we obtain an inequality for the
quantity I introduced in eq. (3):

σI ≥
〈I〉

σs
, (17)

which is saturated when bx = px, i.e. for Kelly’s strat-
egy. To exploit the second divergence, we now use the
quantity W̃ , and we obtain the inequality

σW̃ ≥
〈W̃ 〉

σq
, (18)

which is saturated when px = rx. Note that eqs. (17) and
(18) provides new bounds that complement the inequali-
ties 〈I〉 ≥ 0 and 〈W̃ 〉 ≥ 0 obtained previously.

60005-p4



Phase transitions in optimal betting strategies

Phase transition in optimal strategies. – In order
to prove that there are no tighter bounds of this type, we
carry out a perturbation calculation near the null strategy
using the vector ǫx:

oxbx =
bx

rx
= 1 + εx. (19)

To ensure that �b is still a probability measure, we require
that the column vector �ε = (εx)x lies on the hyperplane
(�r, �ε) =

∑

x rxεx = 0.
By evaluating 〈W 〉 and σW to first order in �ε, we find

that σW ∼ 〈W 〉/γc, with

γc = σq, (20)

an expression which we can be checked by plotting a zoom
of the Pareto border near the null strategy (see SM). The
evaluation of the second order derivative at the null strat-
egy on the Pareto border requires a calculation to second
order in �ε, which gives

d2σW

d〈W 〉2

∣

∣

∣

∣

γ=γc

=
C

γ5
c

, (21)

where C = 〈q3〉 − 〈q2〉2 (see SM). By Cauchy-Schwarz
again, it follows that 〈q2〉2 = 〈q3/2q1/2〉2 ≤ 〈q3〉, thus
C ≥ 0, with equality iff px = rx.

In the particular case of two horses, it is straightfor-
ward to check that the expression of γc given in eq. (10)
and that of the second derivative in eq. (11) are recovered
from eqs. (20), (22). These calculations show that there
is always a phase transition in this model near the null
strategy for an arbitrary number of horses in the region of
positive 〈W 〉. A similar calculation shows that the slope
has the opposite value on the other side in the region of
negative 〈W 〉.

Shape of the front: general results. –

Large negative growth rate. In the regions of the phase
diagram corresponding to negative values of 〈W 〉, the
Pareto front is open. Namely, the growth rate diverges be-
cause it is evaluated on some bx → 0. Easy computations
shows that points in the (〈W 〉, σW ) plane satisfy asymp-
totically 〈W 〉 → −∞ and σW /〈W 〉 → −

√

(1 − P ′)/P ′

when bets bx′ → 0 for x′ ∈ X ′ with P ′ :=
∑

x′∈X′ px′ .
The smallest slope (lower front), is obtained by putting
all the bets on the horse x∗ which has the least chances to
win; this is the worst strategy.

Lower front: positive growth rate. In order to decide
whether other phase transitions are possible in this model,
we now study the convexity of the front near any point.
More precisely, we define the front as the extremum locus
of the functional

J̃m∗(b; λ, μ) := 〈W 2〉 + λ(〈W 〉 − m∗)

+2μ(
∑

x

bx − 1), (22)

where λ, μ are Lagrange multipliers fixing 〈W 〉 and im-
plementing the bet normalization constraint. The pro-
cedure is equivalent to extremizing the variance for a
given average value m∗. The null gradient condition
DJ̃m∗(b; λ, μ) = 0 defines (b, λ, μ) as an implicit function
f(m∗) of m∗. The gradient of f , which is the Hessian of
J̃m∗ , may be inverted with some efforts, yielding by the im-
plicit function theorem the slope dσW /d〈W 〉 = dσW /dm∗

and then finally, the second derivative d2σW /d〈W 〉2 in
terms of μ (proportional to the inverse of the Pareto slope
parameter γ) and averaged functionals of bx/px. Explicit
formulas given in the SM have been checked numerically.
One can then prove in whole generality that the part of
the lower front between the null strategy and Kelly’s strat-
egy is convex, turning to concave in some neighborhood
of the null strategy when 〈W 〉 < 0, and some neighbor-
hood of Kelly’s strategy on the upper front, as confirmed
numerically in fig. 2 and fig. 3 in the case of two and three
horses. Note that this calculation does not exclude the
possibility of other phase transitions in other parts of the
front.

Correlated races. – As a variation on Kelly’s horse
races, we now assume that the races are no longer indepen-
dent but follow from an ergodic Markov process defined
by the conditional probability px | y, which represents the
probability that the horse x wins if the previous horse that
won the race was horse y. Let the bets be also conditional
and defined by bx | y such that

∑

x bx | y = 1. The odds
denoted by ox = 1/rx are assumed to be fair

∑

x rx = 1.
The average growth rate 〈W 〉 now takes the following form

〈W 〉 = lim
N→∞

〈WN 〉 =
∑

x,y

px | y p̄y ln(bx | yox), (23)

where p̄y denote the unique steady state probability of
the races. By optimizing 〈W 〉 with respect to bx|y, we find
that the optimal strategy is still proportional betting with
now px|y = bx|y. This is the new Kelly’s strategy for this
case.

On the trade-off branch, the relevant utility function is

J = α〈W 〉 − (1 − α)σW +
∑

y

λy

∑

x

bx|y, (24)

where λy are Lagrange multipliers associated to the nor-
malization of the bets. The Pareto borders are shown in
fig. 4. We observe numerically that when correlations are
present the upper front for negative W becomes convex
in some intermediate region. In that region, the border
can not longer be described by J3 and the use of J4 is
unavoidable.

The null strategy corresponds to the condition that for
any x, y, bx|y = rx, in which case both the average growth
rate and its variance are zero. An expansion with re-
spect to that strategy can be carried as before. The q
distribution is now defined as qx | y = rx/px | y, which is a
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Fig. 4: Same plot as in fig. 3 but for the case of for 3 horses in
the presence of correlations between the races. Parameters are
detailed in the SM. Inset: zoom near the null strategy together
with predictions from linear approximation.

probability distribution because

〈q〉 =
∑

xy

px | y p̄y
rx

px | y
=

∑

xy

p̄yrx = 1. (25)

Its second moment is now 〈q2〉 =
∑

xy px|yp̄yq2
x|y. Except

for this modification, the critical γ takes the same form
as in eq. (20), which is numerically tested in the inset of
fig. 4.

An inequality similar to eq. (15) can also be obtained
in the case of correlated races because in this case the
conditional bets bx | y are still a probability distribution
∑

x bx | y = 1, and therefore following the same steps, the
positivity of D(r|b) leads to a similar result. In fact, the
normalization of q is equivalent to a fluctuation relation
generalizing eq. (4) [14]. because in that case

〈e−W 〉 =
∑

xy

px | y p̄y
1

px | yox
= 1, (26)

while
〈e−W−I〉 = Λ, (27)

holds in the general case for an arbitrary strategy with
Ix|y = ln(px|y/bx|y).

Conclusion. – In this work, we have derived general
fluctuation relations for betting models of Kelly’s type,
and a bound on the average capital growth rate, similar
to thermodynamic uncertainty relations. This bound cap-
tures the classic trade-off between average growth rate and
risk, which plays a central role in money investment [26].
In models with repetitive investment dynamics, all util-
ity functions become under suitable conditions equivalent
to a utility function with a log mean-variance form [3],
which is the form considered here. This suggests that our
work should be applicable to a broad class of econophysics
models, for which log utility functions are used.

In our work, we have identified a phase transition be-
tween the null strategy and a mixed strategy, and we have
shown that there is no other phase transition between the
null strategy and Kelly’s point due to the convexity of
the lower front. We have also illustrated how to handle
non-convex utility functions, an important issue for appli-
cations to machine learning [27].

The explicit analytical expressions which we have ob-
tained for the slope and curvature of the front at any point
could be used to move directly along the front, as an alter-
native to the involved optimization algorithm used here.
It would be also interesting to explore more systematically
how additional constraints affect the efficient border. The
question of adaptative optimization of the bets, where pos-
sible non-Markovian or non-ergodic features could arise, is
a rich inference problem worth pursuing [10]. Finally, we
hope that this framework could open news research direc-
tions on evolutionary trade-offs and Pareto optimality in
biology [5,6].

∗ ∗ ∗

LD acknowledges financial support from Spanish Min-
isterio de Economı́a, Industria y Competitividad through
grant FIS2017-83709-R. We acknowledge many insightful
discussions with L. Peliti and E. Aurell.

REFERENCES

[1] Kelly J. L. J., Bell Syst. Tech. J., 35 (1956) 917.
[2] Poundstone W., Fortune’s Formula (Hill and Wang)

2005.
[3] MacLean L. C., Thorp E. O. and Ziemba W. T.,

Kelly Capital Growth Investment Criterion, the Theory

and Practice (Word Scientific) 2011.
[4] Markowitz H., J. Finance, 7 (1952) 77.
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