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Abstract – We present a theoretical framework to understand a modified fluctuation-dissipation
theorem valid for systems close to non-equilibrium steady states and obeying Markovian dynamics.
We discuss the interpretation of this result in terms of trajectory entropy excess. The framework
is illustrated on a simple pedagogical example of a molecular motor. We also derive in this context
generalized Green-Kubo relations similar to the ones obtained recently in Seifert U., Phys. Rev.
Lett., 104 (2010) 138101 for more general networks of biomolecular states.
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Introduction. – The application of linear response
theory to systems in thermodynamic equilibrium leads
to the fluctuation-dissipation theorem (FDT) [1], which
states that the response of an equilibrium system to small
external perturbations is determined by correlations at
equilibrium. Suppose that a system at thermal equilibrium
and governed by the time-independent Hamiltonian H0 is
subject to a time-dependent perturbation −λ(t)O from
time t′ on. Then the mean value of a dynamic observable
A(t) at time t > t′ over all path trajectories, 〈A(t)〉path,
satisfies at first order in λ

Req(t, t
′) =
δ〈A(t)〉path
δλ(t′)

= β
d

dt′
〈O(t′)A(t)〉eq, (1)

where the correlation function on the r.h.s. is evaluated
at equilibrium, β = 1/kBT being the inverse temperature.
This relation is a fundamental tool in statistical mechan-
ics since it allows to extract linear response transport
coefficients from an equilibrium situation [2,3]. Beyond
the equilibrium regime, the relation between response and
correlations does not take a simple and universal form as
shown by formal studies of such relations for stochastic
processes [4] or for glassy systems [5]. Experimentally,
departures away from FDT in non-equilibrium systems
have been observed in a variety of systems such as granular
matter, sheared fluids and biological systems [6].

(a)E-mail: gatien.verley@espci.fr

In the last decade, new directions of study on non-
equilibrium systems have emerged. For instance, it
has been realized that thermodynamic quantities like
work [7,8] or entropy [9] acquire a well-defined meaning
at the level of a single trajectory. Various exact relations
among the statistical distributions of work or heat, called
fluctuation relations, have been derived. They typically
hold very generally for a large class of systems and
arbitrarily far from equilibrium [7,10–13]. The entropy
production has been related in Markovian systems
to the difference between the forward and backward
dynamical randomness [14] or as the relative entropy of
the trajectory measures of the forward and backward
dynamics [12,15]. For Hamiltonian dynamics, similarly,
the entropy production has been understood in terms
of the relative entropy between forward and backward
probability distributions in phase space [16]. A classifica-
tion of the various possible decompositions of the entropy
production and of the corresponding fluctuation relations
has been proposed [17]. Within the linear response
regime and for slightly perturbed non-equilibrium steady
states (NESS), the fluctuation relations lead to a modified
fluctuation-dissipation theorem (MFDT) [15,18,19], which
has been tested experimentally using colloidal particles
in optical traps [20,21]. A thermodynamic interpretation
of the MFDT using the concept of entropy flow has been
proposed in [22]. Besides, beyond the linear regime, the
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same fluctuation relations can be used to derive non-linear
response relations of higher order [23].
Let us consider a system initially in a non-equilibrium

steady state, characterized by a (set of) control parameters
denoted by λ. For a given value of λ, we assume that there
exists a steady state with stationary probability distribu-
tion Pst(c, λ) = exp(−φ(c, λ)). A time-dependent pertur-
bation of the dynamics at time t′ around the fixed value
λ0 will be described by λ(t

′) = λ0+ δλ(t′). The response
R(t, t′) = δ〈A(c(t), λ0)〉path/δλ(t′) of the dynamic observ-
able A that depends on the microscopic configuration c(t)
at time t > t′ is given by the MFDT:

R(t, t′) =− d
dt′

〈
∂φ(c(t′), λ)
∂λ

∣∣∣∣
λ=λ0

A(c(t), λ0)

〉
, (2)

where 〈..〉 denotes the average in the stationary state
with the control parameter λ0. The relation (2) has been
derived in the recent ref. [24] for the particular observable
A(c, λ) = ∂φ(c, λ)/∂λ, and before that in ref. [15] (rela-
tion 7.15) for the particular case of diffusion processes.
We also note that in eq. (2), the function φ(c, λ) plays
the role of the energy. For thermal equilibrium, we have
φ(c, λ) = β(H(c)−λO(c)−F (λ)), where F (λ) is the free
energy and eq. (1) is retrieved (using the abbreviation
O(t′) =O(c(t′))).
Modified fluctuation-dissipation theorems have appear-

ed in various forms in the recent literature [3,15,19,22]. In
the first section of this paper, we present an elementary
and self-contained derivation of such a result, which holds
for any single-time observable A(t) and for systems close
to non-equilibrium steady states and obeying Markovian
dynamics. In the second section, we discuss the inter-
pretation of this relation in terms of trajectory entropy
excess, and finally we apply this framework to a simple
model of molecular motor.

Derivation of a modified fluctuation-dissipation
theorem. – We consider a system which evolves
according to a continuous-time Markovian dynamics. The
transition rate from a configuration c to a configuration
c′ is denoted by Wλ(c′, c) to emphasize its dependence
on the control parameter λ(t) which can vary with time.
For each path trajectory, we introduce, as in [13], the
functional Y (t) given by

Y (t) =

∫ t
0

λ̇(τ)
∂φ(c(τ), λ(τ))

∂λ
dτ. (3)

Y (t) plays a role similar to the work in the Jarzynski
relation [25]. The joint probability

Pt(c, Y ) = 〈δ(c− c(t))δ(Y −Y (t))〉path (4)

for the system to be in configuration c at time t with
Y (t) = Y evolves according to

∂Pt(c, Y )

∂t
=
∑
c′
Wλ(c, c

′)Pt(c′, Y )− λ̇∂φ(c, λ)
∂λ

∂Pt(c, Y )

∂Y
.

(5)

The Laplace transform of Pt(c, Y ), given by P̂t(c, γ) =∫
dY Pt(c, Y )e

−γY , obeys the modified master equation:

∂P̂t

∂t
=
∑
c′
W γλ (c, c

′)P̂t(c′) =W
γ
λ · P̂t, (6)

where W γλ is the matrix of elements

W γλ (c, c
′) =Wλ(c, c′)− λ̇γ ∂φ

∂λ
δc,c′ . (7)

For a fixed value of λ there exists a stationary state Pst
such that Wλ ·Pst = 0. Then, it can be checked directly
that the “accompanying” distribution (first defined in
ref. [4]) Pst(c, λ(t)) = e

−φ(c,λ(t)), solves eq. (6) for γ = 1.
Note that this “accompanying” distribution Pst(c, λ(t))
is not stationary because it acquires a time dependence
through λ(t). Therefore, we have P̂t(c, 1) = e

−φ(c,λ(t)), or
equivalently

〈δ(c− c(t))e−Y (t)〉path = e−φ(c,λ(t)). (8)

We emphasize that the l.h.s. depends on the full path
history between time 0 and t, because c(t) and Y (t) do
so, whereas the r.h.s. is a function only of the steady-
state probability corresponding to the value of λ at the
final time t. This relation involves weighted averages with
respect to the functional e−Y (t) and relates non-stationary
expectation values to behavior in the stationary state. The
use of appropriately weighted distribution functions lies
at the core of the various nonequilibrium identities, as
emphasized in the very first works of Jarzynski [7,25] (see
also [12,26,27]). The relation (8) will also play a key role
in deriving the modified FDT. Multiplying this equation
by an arbitrary observable A(c, λ) and summing over all
microscopic configurations c, we obtain a detailed version
of the Hatano-Sasa identity [13]:

〈A(c(t), λ(t))e−Y (t)〉path = 〈A(λ(t))〉NESS, (9)

where 〈..〉NESS denotes the average in the stationary state
at time t with control parameter λ(t). We now take the
functional derivative of this relation with respect to λ(t′)
with t′ < t by considering a small variation in the vicinity
of the stationary state λ(t′) = λ0+ δλ(t′) with δλ(t′)� 1
and δλ̇(t′)� 1. Then, Y (t) being small, we can write at
first order e−Y (t) � 1−Y (t). Taking into account that the
functional derivative of the r.h.s. of eq. (9) with respect to
λ(t′) vanishes for t′ < t, we obtain

δ〈A(c(t), λ(t))〉path
δλ(t′)

=
δ〈Y (t)A(c(t), λ(t))〉path

δλ(t′)
. (10)

The functional derivative of the r.h.s. in the vicinity of
λ0 contains only one term instead of two because Y (t)
vanishes when λ(t′) takes the constant value λ0. Using

δY (t)

δλ(t′)

∣∣∣
λ0
=− d
dt′
∂φ(c(t′), λ0)

∂λ
, (11)
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we obtain

R(t, t′) =− d
dt′

〈
∂φ(c(t′), λ0)

∂λ
A(c(t), λ0)

〉
. (12)

In the expectation value the control parameter is now fixed
at λ0 and eq. (2) is proved. Introducing the observable
O(c) =−∂λPst(c)/Pst(c), eq. (2) can be rewritten as

R(t, t′) =− d
dt′
〈A(t)O(t′)〉. (13)

Remark : more general versions of the FDT, valid for
an arbitrary observable F [c, λ], that depends on the
whole path (and not on the final configuration only)
can be derived [15] by comparing the weights of direct
and reverse path trajectories and using a local detailed
balance condition, in the spirit of [11]. The fundamental
relation (8) has to be replaced by

〈F [c, λ]e−Y (t)〉path = 〈F̃ [c, λ]〉rpath, (14)

where the tilde and the index r denote an average with
respect to reverse paths. We emphasize, however, that in
the derivation given above of the relation (2) no symmetry
property under time reversal has been used.

Connection between MFDT and entropy
production. – An important step towards a unification
of the various formulations of the FDT for non-equilibrium
systems comes from the realization that the MFDT can
be given by a thermodynamic interpretation in terms
of trajectory entropy excess [19,22,28]. Recently, a new
decomposition of the entropy production has been
introduced in refs. [17,29] in a particularly clear way.
This motivated us to revisit the derivation of the MFDT
of refs. [19,28] with this formalism. As expected, the
decomposition of the entropy production leads to an
MFDT which is the sum of an equilibrium part and an
additive correction.
We now focus on individual stochastic trajectories taken

by the system. Between the time t= 0 and t= T , these
trajectories can be represented by the set of discrete
values C = {c0, c1. . . cN} and jumping times τi. The system
stochastic entropy is defined as s(t) =−lnPt(c(t)), as a
trajectory-dependent quantity with c(t) taking values in
C [9]. Following [29], we define the rate of change of the
excess entropy

ṡex(t) =
N∑
i=1

δ(t− τi) ln Pst(ci, λτi)
Pst(ci−1, λτi)

, (15)

where τi represents the time where the system jumps from
state ci−1 to state ci. It follows that the integral of ṡex(t′)
from t′ = 0 to t, ∆sex(t) corresponds to the excess heat
defined in [13], which satisfies ∆sex(t) = Y (t)−∆φ(t),
where ∆φ(t) = φ(c(t), λ(t))−φ(c(0), λ(0)).

On a trajectory where λ is fixed at λ0,

∂ṡex(t)

∂λ

∣∣∣∣
λ=λ0

=

N∑
i=1

δ(t− τi) ∂
∂λ
ln
Pst(ci, λ0)

Pst(ci−1, λ0)
,

=
d

dt

∑
n

δc(t)n
∂

∂λ
lnPst(n, λ0),

= − d
dt

∂φ(c(t), λ0)

∂λ
. (16)

After moving the time derivative on the r.h.s. of eq. (2)
into the correlation function, we can then use eq. (16) to
obtain another formulation of the MFDT:

R(t, t′) =
〈
∂ṡex(t

′)
∂λ

A(t)

〉
. (17)

As shown in refs. [17,29], the excess entropy can be
decomposed as ṡex = ṡr − ṡa, where sr is the reservoir
entropy and sa the adiabatic entropy (also called house-
keeping heat [13]). These quantities satisfy

ṡr(t) =

N∑
i=1

δ(t− τi) ln
Wλτi (ci, ci−1)
Wλτi (ci−1, ci)

,

ṡa(t) =

N∑
i=1

δ(t− τi) ln
Wλτi (ci, ci−1)Pst(ci−1, λτi)
Wλτi (ci−1, ci)Pst(ci, λτi)

.

In the stationary state (NESS) at λ= λ0, it follows from
eq. (15) that ṡex =−ṡ, and thus eq. (17) agrees with
eq. (17) of ref. [19]. This also implies ṡna = 0, and ṡa = ṡtot,
and since ṡr = smed, the splitting of the entropy excess
which is used here is the same as that of ref. [19].
We now proceed in deriving another form of MFDT

with this framework. We assume that the system satisfies
a generalized detailed balance condition

Wλ(c, c
′)

Wλ(c′, c)
=
Wλ0(c, c

′)
Wλ0(c

′, c)
exp(δλd(c, c′)), (18)

where d(c, c′) describes the variation of a dimensionless
physical quantity during a transition from state c′ to state
c such that d(c, c′) =−d(c′, c) [28]. Using eq. (18) and the
definition of ṡr one obtains

∂λṡr(t
′) =

N∑
i=1

δ(t′− τi)d(ci, ci−1) = j(t′), (19)

where j(t′) corresponds to a physical current. Similarly,
one can define ν(t′) = ∂λṡa(t′), in such a way that the
response function takes the form

R(t− t′) = 〈A(t)(j(t′)− ν(t′))〉. (20)

This form is analogous to the one first obtained for
a particle obeying Langevin dynamics [18], which has
the property that an equilibrium form of the FDT can
be restored in a locally moving frame [15]. However,

10002-p3



G. Verley et al.

it is important to realize that the ν introduced above
is different from the mean local velocity used in these
references, although both quantities lead to the same
correlation function [19].
For practical applications of this result, more explicit

expressions of the currents j(t′) and ν(t′) are needed. For
the part of the response function coming from the reservoir
entropy (the equilibrium part), we can write

〈A(t)j(t′)〉=
〈
A(t)

N∑
i=1

δ(t′− τi)d(ci, ci−1)
〉
,

=
∑
c,c′,n

AnP (n, t|c, t′+)P (c, t′+|c′, t′−)Pst(c′, λ0)d(c, c′),

which corresponds to a sum over trajectories which jump
at time t′. We have denoted P (n, t|c, t′+) the conditional
probability to be in state n at time t provided that the
state c was visited immediately after the jump at time t′+.
This quantity needs to be evaluated at λ(t′) = λ0. Then,
it follows that 〈A(t)j(t′)〉 is equal to

∑
c,c′,n

An〈δc(t)nδc(t′)c〉Wλ0(c, c
′)

Pst(c, λ0)
Pst(c

′, λ0)d(c, c′) =

〈
A(t)

∑
c

δc(t′)cj(c, λ0)

〉
, (21)

where j(c, λ0) are components of the current j(t
′)

defined by

j(c, λ0) =
∑
c′

Pst(c
′, λ0)

Pst(c, λ0)
Wλ0(c, c

′)d(c, c′). (22)

A similar calculation can be carried out for the part
of the response function associated with the adiabatic
entropy:

〈A(t)ν(t′)〉=
〈
A(t)

∑
c

δc(t′)cν(c, λ0)

〉
, (23)

where the components of the local current ν(t′) are
given by

ν(c, λ0) =
∑
c′

Jst(c
′, c)

Pst(c, λ0)
∂λ lnWλ0(c

′, c), (24)

and Jst(c
′, c) denotes the probability current

Pst(c, λ0)Wλ0(c
′, c)−Pst(c′, λ0)Wλ0(c, c′). Note that

eq. (24) agrees with the results given in ref. [28].

A discrete ratchet model. – We now apply the
framework developed above to a discrete ratchet model
of a molecular motor. Single molecular motors have been
traditionally modeled either by continuous models such as
the flashing ratchet model [30] or by discrete models based
on the master equation formalism [31]. In previous works,
we have shown that the Gallavotti-Cohen symmetry is
present both in discrete models [32,33] and in continuous
ones [34] when all the relevant variables are taken into
account.
In the discrete ratchet model, a single motor evolves

on a linear discrete lattice by hopping from one site to

a

b

a

b

a
0 1 2 3 4

−→ωa

←−ωb
−→ωb

←−ωa

Fig. 1: A schematic representation of the motor on a linear
lattice of sites a (even) and b (odd). All possible transitions
are displayed with their corresponding rates.

neighboring sites, either consuming or producing ATP
molecules as shown in fig. 1. The position of the motor is
denoted by x= nd0, where 2d0 is the step size of the motor,
and y denotes the number of ATP molecules consumed.
Because of the periodicity of the filament, all the even
(a) sites and all the odd (b) sites are equivalent. Denoted
by ←−ω a (and −→ω a) are the transition rates for the motor
to jump from site a to the neighboring site b to the left
(to the right), respectively. A similar definition holds for
the site b and we use the abbreviations ωi =←−ω i+−→ω i for
i= a, b, and Ω= ωa+ωb.
The probability to find the motor in a given state, say

i= a, b is Pi(t) = 〈δic(t)〉path, where c(t) is the configuration
of the system at time t in the space of configuration a, b.
Similarly, the joint probability to be in state i at time t and
in state j at time t′ is P (i, t; j, t′) = 〈δic(t)δjc(t′)〉path. Both
quantities can be calculated analytically for this model
even for time-dependent rates. We now assume that the
rates depend on time only via an arbitrary controlled
parameter λ(t), and we note that this dependence can
be non-linear. As a result, the time dependance of an
arbitrary observable A(c(t), λ) has the form

A(c(t), λ) =Aa(λ)δac(t)+Ab(λ)δbc(t). (25)

In particular, the function φ(c(t), λ) has this form
with φa(λ) =−logPst(a, λ) =−log[ωb(λ)/Ω(λ)] and
φb(λ) =−logPst(b, λ) =−log[ωa(λ)/Ω(λ)].
With the above equations, we can characterize the

response of the system to a perturbation of the rates
of the form ωi(λ(t)) = ωi(λ0)+ δλ(t)∂λωi(λ0) for i= a, b.
We have separately calculated both sides of eq. (2),
and we found in agreement with this equation the same
quantity, which is the response function associated with
the observable A(c, λ):

R(t, t′) =
ωa(λ0)∂λωb(λ0)−ωb(λ0)∂λωa(λ0)

Ω(λ0)

× [Aa(λ0)−Ab(λ0)] exp[−Ω(λ0)(t− t′)] , (26)

for t > t′.
Decomposition of the response function. We now

proceed in decomposing the above response function into
a sum of two terms, which correspond to the two parts of
the entropy production discussed in the previous section.
In the following, we chose for the control parameter either
the normalized force applied on the motor, f , or the
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normalized chemical-potential difference associated with
the ATP hydrolysis reaction, ∆µ. These quantities are
defined as f = Fd0/kBT and ∆µ=∆µ̃/kBT , in terms of
the applied force F , and the chemical-potential difference
∆µ̃. The sign convention for the force is such that it is
positive when it is in the motor motion direction.
In the case of a pure mechanical perturbation, λ(t) =

f(t) = f0+ δf(t). The generalized detailed balance rela-
tions of eq. (18) now takes the following form:

−→ωb(f)←−ωa(f) =
−→ωb(0)←−ωa(0)e

f ,
←−ωb(f)−→ωa(f) =

←−ωb(0)−→ωa(0)e
−f , (27)

with the correspondance d(n± 1, n) =±1, valid for any
position n. These relations are obeyed by the following
parametrization of the rates

−→ωa(f) = ωe−ε+θ+f , −→ωb(f) = ω′e+(1−θ−)f ,

←−ωa(f) = ω′e−ε−θ−f , ←−ωb(f) = ωe−(1−θ+)f ,
(28)

where θ+ and θ− are load distribution factors [31].
The motor velocity can be defined generally by 〈v(t)〉=∑
n n∂Pn(t)/∂t, with Pn(t) the probability to find the

motor on an integer position n at time t. Since this velocity
is the current of the position variable, eq. (22) can be used
to define the components of this current:

v(a, f0) = d0
Pst(b, f0)

Pst(a, f0)
[−→ωb(f0)−←−ωb(f0)],

and similarly for v(b, f0) by exchanging a and b. In a
similar way, the components of the local current can be
obtained from eq. (24):

ν(a, f0) =
(θ++ θ−)v̄
2Pst(a, f0)

, ν(b, f0) =
(2− θ+− θ−)v̄
2Pst(b, f0)

,

with v̄= 〈v(t)〉= 〈ν(t)〉. Now, as in eq. (20), we obtain the
response function associated with an observable A:

δ〈A(t)〉path
δf(t′)

=
1

d0
〈A(t)(v(t′)− ν(t′))〉. (29)

For the case of a chemical perturbation in the concen-
trations of ATP, or of ADP and P, the control parameter
is λ(t) =∆µ(t) =∆µ0+ δ∆µ(t). The transition rates for
the motor to jump from a site i to a neighboring site on
the left or on the right with l (=−1, 0, 1) ATP molecules
consumed are ωli =

−→ωil+←−ωil, with i= a, b. Local detailed
balance conditions similar to eq. (27) imply the following
parametrization of the rates:

ω1a = (α+α
′)e−ε+σ∆µ, ω−1b = (α+α

′)e(σ−1)∆µ,

ω0a = (ω
′+ω)e−ε, ω0b = ω+ω

′,
(30)

where σ plays the same role as the θ+ and θ− before.
Then, by a similar calculation, the response function can
be written as

δ〈A(t)〉path
δ(∆µ(t′))

= 〈A(t)(r(t′)−R(t′))〉, (31)

where r(t′) is the instantaneous ATP consumption rate
and R(t′) the local ATP consumption rate, defined by
their components

r(a,∆µ0) = −ω−1b (∆µ0)Pst(b,∆µ0)/Pst(a,∆µ0),
r(b,∆µ0) = ω

1
a(∆µ0)Pst(a,∆µ0)/Pst(b,∆µ0),

R(a,∆µ0) = σr̄/Pst(a,∆µ0),
R(b,∆µ0) = (1−σ)r̄/Pst(b,∆µ0).
Now, we can also introduce more general rates, which

depend on both control parameters f and ∆µ [32]. The
method presented above in the particular cases where
only a mechanical degree of freedom or only a chemical
degree of freedom is taken into account, can be extended
to more general situations where the state of motor is
described by both variables. In this case, the same function
φ(c, λ) can be used, with the understanding that c contains
some dummy variables (the position variable x(t) or the
chemical variable y(t)) in addition to the variables used
to describe the non-equilibrium steady state (namely
i= a, b). By proceeding just as above, one obtains the
response functions in eq. (32), which take the form of
modified Green-Kubo relations [28,35]

〈v(t)〉path−〈v〉 =
∫ t
0

dt′
δf(t′)
d0
〈v(t)(v(t′)− ν(t′))〉

+

∫ t
0

dt′ δ∆µ(t′)〈v(t)(r(t′)−R(t′))〉,

〈r(t)〉path−〈r〉 =
∫ t
0

dt′
δf(t′)
d0
〈r(t)(v(t′)− ν(t′))〉

+

∫ t
0

dt′ δ∆µ(t′)〈r(t)(r(t′)−R(t′))〉.
(32)

A few remarks about these equations are in order:
First, in the particular case of an equilibrium steady state
(when ν =R= 0), the Einstein and Onsager relations are
clearly recovered from these equations. Secondly, near a
non-equilibrium steady state, these equations characterize
the response of the motor in the linear response regime,
thus extending the results of ref. [32] to the case of time-
dependent perturbations. As expected from the linearity
of the problem, the response can be decomposed as the
sum of contributions corresponding to the cases of pure
mechanical and pure chemical perturbations.
Furthermore, we note that the Einstein relation for the

mechanical variable is recovered only near stalling, just
as in the case of time-independent perturbations [33].
However, as pointed out in ref. [28], in more general
networks of chemical reactions, there are additional
conditions besides the stalling condition for the Einstein
relation to hold. In this model a mechanical perturbation
applied to the motor at stalling is thus unable to detect
that the system is in a NESS. But, if a perturbation in
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Fig. 2: (Colour on-line) Response function of the motor velocity
R(t, 0), as a function of time t for a perturbation of the chemical
potential ∆µ applied at time 0 (solid line), correlation function
of the velocity with the ATP consumption rate, 〈v(t)r(0)〉
(dash-dotted curve), and correlation function of the velocity
with the local ATP consumption rate 〈v(t)R(0)〉 (dashed line).
The initial condition corresponds to stalling for which v̄= 0.
For these curves, we have used the following parameters:
ε= 10.81, d0 = 4nm, ω= 3.5 s

−1, ω′ = 108.15 s−1, α= 0.57 s−1,
α′ = 1.3× 10−6 s−1, θ+ = 0.705, θ− = 1.375, σ= 0.8, ∆µ= 11.8
and f =−3.82 (stalling force). The sum of the two dashed lines
gives the solid curve as imposed by eq. (32).

the more relevant chemical variable is considered, then
the NESS can be detected. This point is illustrated in
fig. 2, which shows the deviation from the standard FDT
(at equilibrium), deviation which can be predicted from
eq. (32).

Conclusion. – We have presented a general self-
contained derivation of the modified FDT for systems close
to non-equilibrium steady states and obeying Markovian
dynamics. We believe that this derivation, which is related
to many recent works on fluctuation relations, is suffi-
ciently general to lead to further developments. We have
also shown that the MFDT can be expressed as the corre-
lation function of a general observable with the trajectory
entropy excess, which leads to the decomposition of the
MFDT into two terms.
We have applied this framework to a simple model

of molecular motor for which the steady-state probabil-
ity distribution is known analytically. Finally, we have
observed that the modified FDT relation requires a knowl-
edge of the relevant degrees of freedom in order to be able
to distinguish an equilibrium state from a non-equilibrium
steady state. In this choice of the relevant degrees of free-
dom, the markovianity of the dynamics plays a central
role, as it does for the existence of a Gallavotti-Cohen
symmetry.
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