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Fluctuation theorems have become an important tool in single-molecule biophysics to measure free-energy
differences from nonequilibrium experiments. When significant coarse-graining or noise affect the measurements,
the determination of the free energies becomes challenging. In order to address this thermodynamic inference
problem, we propose improved estimators of free-energy differences based on fluctuation theorems, which we
test on a number of examples. The effect of the noise can be described by an effective temperature, which only
depends on the signal-to-noise ratio, when the work is Gaussian distributed and uncorrelated with the error
made on the work. The notion of effective temperature appears less useful for non-Gaussian work distributions
or when the error is correlated with the work, but nevertheless, as we show, improved estimators can still be
constructed for such cases. As an example of nontrivial correlations between the error and the work, we also
consider measurements with delay, as described by linear Langevin equations.

DOI: 10.1103/PhysRevE.93.032103

I. INTRODUCTION

Fluctuation theorems are symmetry relations, which con-
strain the probability distributions of thermodynamic quan-
tities arbitrarily far from equilibrium [1–3]. Their discovery
has represented a major progress in our understanding of the
second law of thermodynamics and has also accompanied
many advances in the observation and manipulation of various
experimental nonequilibrium systems, such as biopolymers
[4,5], manipulated colloids [6,7], mechanical oscillators or
electronic circuits [8], or quantum devices [9].

One major field of applications of fluctuation theorems lies
in the determination of free energies through proper averaging
of the work within well-defined nonequilibrium ensembles. In
practice, in order to determine free energies using the Jarzynski
relation [1], for instance, a large number of experiments are
required in order to ensure that the rare trajectories which
contribute the most are sampled correctly [10].

In addition to this sampling problem, other sources of errors
in the determination of the free energy can arise from the
measurement process itself. For instance, the experiment may
involve some degrees of freedom which evolve on a much
faster time scale than the response time of the measurement
device, the experiment may not allow measurement of all the
degrees of freedom which are needed to evaluate the work,
or for some other reasons the work is not properly evaluated
from the measurements. Clearly, a difference can arise between
the true trajectories of the system and the coarse-grained or
noisy trajectories, which are in fact recorded. This uncertainty
in the trajectories leads to a difference between the true
work and the measured work, which we call error and which
limits our ability to determine free-energy differences using
fluctuation theorems.

In order to address this issue, a proper understanding of the
way coarse-graining or measurement noise affects fluctuation
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relations is needed. The modifications of fluctuation relations
due to coarse-graining have been studied by a number of
authors following the original theoretical work of Rahav et al.
[11] and motivated by various experimental systems such
as manipulated colloids [12,13], granular systems [14–17],
quantum dot devices [9,18], molecular motors [19–21], and
single biopolymer molecules [4,22,23]. For instance, for
molecular motors, the issue of coarse-graining is central, since
only their position is typically available as a function of time
experimentally. The chemical consumption of ATP from these
molecules is hidden and this limits our ability to use fluctuation
theorems for molecular motors. Naturally, for other systems,
the precise modifications of the fluctuation relations will take
various forms depending on the original dynamics and the way
coarse-graining is performed.

The present paper addresses the effect of coarse-graining or
noise on fluctuation theorems of the Jarzynski and Crooks type.
It is closely related to two recent studies, the first one on the
error associated with finite-time-step integration in Langevin
equations [24] and the second one on thermodynamic inference
of free-energy differences in single-molecule experiments
[4,23]. Building mainly on these two works, we revisit this
issue at a general level. We think that such an approach is
pertinent since the question we are interested in is not bound
to a specific experimental setup or dynamics: At some level, it
originates from a fundamental property of entropy production,
namely its dependence on coarse-graining. This question
is an active field of research in stochastic thermodynamics
[20,25–28].

The remainder of the paper is organized as follows. In
Sec. II, we present general properties of the correction factors
to the Jarzynski and Crooks relations. Then, in Sec. III, we
first consider Gaussian distributed work and error and an error
which is uncorrelated with the work. This example is then
extended in two ways: first by considering non-Gaussian work
distributions and then by considering the specific case that
the error is linearly correlated with the work. We present in
Sec. IV a numerical verification of our results based on specific
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choices of dynamics. This section also includes an analytical
and numerical study of a model based on Langevin equations
for which correlations in the error arise due to measurement
delays.

II. GENERAL PROPERTIES OF FLUCTUATION
THEOREMS WITH COARSE-GRAINING OR NOISE

The Jarzynski relation [1] allows us to determine equilib-
rium free-energy differences from an average of nonequilib-
rium measurements:

〈e−βW 〉� = e−β�F , (1)

where W is the work done on a system and � = {λ(t)}τt=0
denotes a protocol of variation of a control parameter λ(t)
between time 0 and time τ , which starts initially in an
equilibrium state A corresponding to the value λA = λ(0) and
ends up when the control parameter has reached λB = λ(τ )
at time τ . Although the state reached by the system at time
τ is not in general an equilibrium one, �F = FB − FA

represents the equilibrium free-energy difference between
states corresponding to λA and λB . The average in Eq. (1),
denoted by 〈. . .〉�, is taken over all nonequilibrium trajectories
which are realized in this process.

Very much related to the Jarzynski relation, the Crooks fluc-
tuation theorem constrains the ratio of probability distributions
of the work associated with an arbitrary protocol which starts
in an equilibrium state, P (W ), with respect to its time-reversed
twin, P̃ (W ), associated with �̃ = {λ(τ − t)}τt=0 [2]:

ln
P (W )

P̃ (−W )
= β(W − �F ). (2)

Both Eqs. (1) and (2) have been experimentally used to deter-
mine free-energy differences. From Eq. (1) it follows straight-
forwardly that β�F = − ln〈e−βW 〉, while from Eq. (2) one
obtains β�F = βW∗, where W∗ solves P (W∗) = P̃ (−W∗).

As mentioned in the Introduction, we are interested in
situations in which the true work W is not accessible due to
coarse-graining or noise present in the measured variables or
due to an incorrect evaluation of the work. To describe the first
source of error, due to the trajectories, we distinguish the true
trajectory of the system, X = {x(t)}τt=0, which will be typically
inaccessible, from the measured (or coarse-grained) one which
is accessible and which we shall denote by Xm = {xm(t)}τt=0.
Unless we specify otherwise, the distribution of the initial
condition of the true trajectory, namely x(0), is assumed to
be at equilibrium. In contrast, the distribution of the initial
condition of the measured trajectory, namely xm(0), does not
need to be at equilibrium and is typically correlated with x(0).

In order to describe the second source of error, at the level
of the work itself, we assume that both works are evaluated
from a Hamiltonian but that two different Hamiltonians, H

and Hm, are involved. More precisely, we define

W [X] =
∫ τ

0
dtλ̇(t)∂λH (x(t); λ(t)) (3)

and

Wm[X] =
∫ τ

0
dtλ̇(t)∂λH

m(xm(t); λ(t)). (4)

With these notations, we write generally:

W [X] = Wm[Xm] + E[Xm,X], (5)

where W [X] denotes the true value of the work defined for
the true trajectory X, Wm[Xm] is similarly the measured work
associated with the measured (or coarse-grained) trajectory,
and E[Xm,X] is the corresponding error. For simplicity, we
choose not to indicate explicitly the dependence on the driving
�, which is present in W [X], Wm[Xm], and E[X,Xm]. This
error E can frequently be modeled as a Gaussian distribution
with nonzero mean and variance as a result of the central
limit theorem. Furthermore, it may in general depend on
the duration of the experiment and on the rate of change
of the driving protocol, although we cannot exclude other
contributions independent of the driving.

Let us also introduce two corrections factors R and �(Wm),
which capture respectively the modifications of Eq. (1) and
Eq. (2) due to measurement errors or coarse-graining. The
modified Jarzynski relation becomes

〈e−β(Wm−�F )〉� = eβR, (6)

and the modified Crooks relation becomes

ln
P m(Wm)

P̃ m(−Wm)
= β[Wm + �(Wm) − �F ], (7)

where P m(Wm) denotes the probability distribution of the
measured work values, which equals 〈δ(Wm − Wm[Xm])〉�.
From these equations, it is apparent that both estimators of free
energy are biased. Indeed, the first one leads to the estimate
of free energy �F̂ = �F − R �= �F , while the second one
leads to �F̂C = W
 = �F − �(W
) �= �F , where W
 solves
P m(Wm


 ) = P̃ m(−Wm

 ).

To shorten the notations, we shall denote the symmetry
functions as

Y (W ) = ln
P (W )

P̃ (−W )
, (8)

and, similarly,

Ym(Wm) = ln
P m(Wm)

P̃ m(−Wm)
. (9)

A. A joint distribution function-based formulation

In order to evaluate the corrections factors R and �(Wm),
we rely on a symmetry relation for joint distributions [29,30].
To understand how it is derived, it is useful to recall that at the
heart of Crooks relation, Eq. (2), there is a deeper statement
on the path probability density of true trajectories which is

P̃[X̃]

P[X]
= e−β(W [X]−�F ), (10)

where it has been assumed that the system’s initial condition
at t = 0 corresponds to equilibrium. The starting point of this
derivation is the ratio of the joint probabilities of true and
measured trajectories in the forward process to that in the
reverse process:

P[X,Xm]

P̃[X̃,X̃m]
= Pe[Xm|X]

P̃e[X̃m|X̃]

P[X]

P̃[X̃]

= exp[β(Wm + E − �F ) + Se], (11)
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with Se ≡ ln(Pe[Xm|X]/P̃e[X̃m|X̃]) probing the time-reversal
symmetry of the conditional probability Pe[Xm|X]. In the last
step, we have used Eqs. (5) and (10). We can then write

P m(Wm,E,Se) =
∫

DXDXmP[X,Xm]

× δ(Wm − Wm[Xm])δ(E − E[X,Xm])

× δ(Se − Se[X,Xm]). (12)

It is simple to show using Eq. (3) that the true work is
antisymmetric under time-reversal in the following sense:

W [X] = −W̃ [X̃], (13)

where the tilde operation on W or Wm indicates that dynamics
occurs in the presence of a reversed protocol. Naturally, given
the similarity of definitions between the true and the measured
works, the same property holds for the measured work:

Wm[Xm] = −W̃m[X̃m]. (14)

As a result of these two relations, the error, defined in
Eq. (5), is also antisymmetric under time reversal, E[X,Xm] =
−Ẽ[X̃,X̃m]. Then, using these relations and Eq. (11), we get

P m(Wm,E,Se) = eβ(Wm+E−�F )+Se

∫
DXDXmP̃[X̃,X̃m]

× δ(Wm + W̃m[X̃m])δ(E + Ẽ[X̃,X̃m])

× δ(Se + S̃e[X̃,X̃m])

= eβ(Wm+E−�F )+Se P̃ m(−Wm,−E,−Se).
(15)

Now integrating this equation over Se, after multiplying it by
e−Se , one obtains∫

e−SeP m(Wm,E,Se)dSe = eβ(Wm+E−�F )P̃ m(−Wm,−E).

Let us introduce the notation

〈e−Se |Wm,E〉� =
∫

e−SeP m(Wm,E,Se)dSe

P m(Wm,E)

=
∫

e−SeP m(Se|Wm,E)dSe. (16)

We then obtain

P m(Wm,E)〈e−Se |Wm,E〉� = eβ(Wm+E−�F )P̃ m(−Wm,−E).
(17)

Therefore one finally arrives at the relation

ln
P m(Wm,E)

P̃ m(−Wm,−E)
= β[Wm + E − �F + �(Wm,E)],

(18)
where

�(Wm,E) ≡ − ln〈e−Se |Wm,E〉�. (19)

In the following, we restrict to the case where �(Wm,E) =
0, which holds whenPe[Xm|X] = P̃e[X̃m|X̃]. As we shall see,
this assumption is not very restrictive and allows the derivation
of some interesting results. Under this assumption, Eq. (18)

simplifies to

ln
P m(Wm,E)

P̃ m(−Wm,−E)
= β(Wm + E − �F ), (20)

which is precisely the fluctuation theorem for the joint
distribution of the measured work and the error [30]. From
Eq. (20) we can immediately derive Eq. (6),

〈e−β(Wm−�F )〉� = 〈e−βE〉�̃ ≡ eβR, (21)

leading to the explicit form of the correction to the Jarzynski
estimator:

R = β−1 ln〈e−βE〉�̃ = β−1 ln
∫

ρ̃(E)e−βEdE, (22)

in terms of the marginal time-reversed distribution of the error

ρ̃(E) =
∫

P̃ m(Wm,E)dWm. (23)

We now proceed with Eq. (7), which can be easily deduced
from (20). We have:

P̃ m(−Wm) =
∫

dEP̃ m(−Wm,−E)

=
∫

dEP m(Wm,E)e−β(Wm+E−�F )

= P m(Wm)e−β(Wm−�F )〈e−βE|Wm〉�, (24)

where as before we have introduced the notation

〈e−βE|Wm〉� =
∫

e−βEP m(E|Wm)dE. (25)

From Eq. (24) we immediately obtain Eq. (7) with the
identification

�(Wm) = −β−1 ln〈e−βE |Wm〉�. (26)

A link between �(Wm) and R can be simply derived from the
fact that the detailed theorem Eq. (7) must lead to the integral
theorem Eq. (6):

〈e−β(Wm−�F )〉� = eβ�F

∫
dWmP m(Wm)e−βWm

= eβ�F

∫
dWmP̃ m(Wm)eβ(�(−Wm)−�F )

= 〈eβ�(−Wm)〉�̃, (27)

which implies after comparing with Eq. (6):

R = β−1 ln〈eβ�(−Wm)〉�̃. (28)

Notice that R only depends on the error distribution
function in Eq. (22) or on the correlations between the
measured work and the error in the equivalent formulation
of Eq. (28). In both cases, the true work does not explicitly
appears [24]. The same property holds for the correction
�(Wm).

B. Explicit corrections for uncorrelated error

In practice, the evaluation of the functions R and �(Wm)
is rather difficult since this requires a knowledge of the joint
distribution of the error and the measured work. In order to
progress, we introduce further assumptions in this section.
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We can generally write the joint probability distribution of
the measured work and the error as

P m(Wm,E)dWmdE = P m(Wm|E)ρ(E)dWmdE

= P (Wm + E|E)ρ(E)dWdE

⇒ P m(Wm,E) = P (Wm + E|E)

∣∣∣∣ ∂W

∂Wm

∣∣∣∣
E

ρ(E)

= P (Wm + E|E)ρ(E), (29)

where, in the second line, we have changed variables from
Wm to W using Eq. (5); this change of variable has a Jacobian
unity since E is fixed, hence the third line. When the error is
uncorrelated with the true work, P (Wm + E|E) = P (Wm +
E), and we obtain the following factorization relation:

P m(Wm,E) = P (Wm + E)ρ(E). (30)

Thanks to the factorization property of Eq. (30), the experi-
mental work distribution becomes a simple convolution:

P m(Wm) =
∫

dEP (Wm + E)ρ(E). (31)

Furthermore, the conditional probability of the work given
the error is just the true work distribution but shifted,
P m(Wm|E) = P (Wm + E). By Bayes’ formula, the condi-
tional probability of the error given the work reads

P m(E|Wm) = P (Wm + E)ρ(E)∫
dEP (Wm + E)ρ(E)

. (32)

From the last equation and (26), we obtain the form of �(Wm)
in terms of the true work and the error distributions:

�(Wm) = − 1

β
ln

∫
dEP (Wm + E)ρ(E)e−βE∫

dEP (Wm + E)ρ(E)
. (33)

Equations (31) and (33) constitute the first main result of
the present paper. These explicit expressions of the correction
factors can be derived when it is possible to integrate out the
contribution of the error independently of the other degrees of
freedom of the system. More precisely, we have used two main
assumptions: The first one is the invariance under time-reversal
symmetry of Pe[Xm|X] and the second one is the statistical
independence of E and W . As shown in Appendix A, taken
together these assumptions also imply the invariance of the
error distribution under time-reversal symmetry, namely

ρ(E) = ρ̃(−E). (34)

In the following, we present various applications of this
framework to specific work and error distributions.

III. CONSEQUENCES FOR SPECIFIC WORK
AND ERROR DISTRIBUTIONS

A. Uncorrelated Gaussian error and Gaussian
work distribution

Before addressing more complex situations, it is instructive
to consider a simple case where the true work and error
distributions are Gaussian, and the error is assumed to be
uncorrelated with the true work of mean ε and of variance σ 2.
In this case, the experimental work distribution will also be a
Gaussian, and the correction factor to the Crooks fluctuation
theorem, �(Wm), will be a linear function of Wm. To be

explicit, let us take the work and noise probability distributions
of the form

P (W ) = 1√
2πσ 2

W

exp

[
− (W − 〈W 〉)2

2σ 2
W

]
, (35)

ρ(E) = 1√
2πσ 2

exp

[
− (E − ε)2

2σ 2

]
. (36)

Naturally, since W and E are assumed to be uncorrelated, the
variance of the measured work σ 2

Wm is simply the sum of the
variances of the work and of the error: σ 2

Wm = σ 2
W + σ 2. Now

the bias in the Jarzynski estimator, R, can be evaluated using
Eqs. (22), (34), and (36), with the result

R = β
σ 2

2
+ ε, (37)

which depends on temperature, the variance of the noise, and
its mean.

Let us now calculate the bias in the Crooks estimator,
�(Wm) from Eqs. (33), (35), and (36). We find:

�(Wm) = − σ 2

σ 2 + σ 2
W

(
Wm − 〈W 〉 + β

σ 2
W

2
− εσ 2

SN

)
, (38)

where σ 2
SN = σ 2

W/σ 2 is the signal-to-noise ratio.
This result can be further simplified using the fluctuation

theorem of the true work, namely 〈e−βW 〉 = e−β�F , which
is equivalent in this case to βσ 2

W = 2(〈W 〉 − �F ). Thus, we
obtain

�(Wm) = ϑ
(
σ 2

SN

)(
Wm − �F − σ 2

SNε
)
, (39)

in terms of the signal-to-noise ratio and the function ϑ(y) =
−1/(1 + y). In this simple case, the Crooks theorem for the
distribution of the measured work reads

Ym(Wm) = βν
(
σ 2

SN

)
(Wm − �F + ε), (40)

where Ym is the symmetry function defined in Eq. (9) and
ν(σ 2

SN) is the function:

ν
(
σ 2

SN

) = σ 2
SN

1 + σ 2
SN

= σ 2
W

σ 2 + σ 2
W

. (41)

As expected, the Crooks fluctuation theorem is recovered in
the absence of noise, i.e., when ε = σ = 0.

It is apparent from Eq. (40) that the mean of the error
shifts the estimation of the free energy by a constant, while
the variance of the error affects the slope of the symmetry
function. When the mean of the error is zero (ε = 0), only the
change of slope occurs. In that case, the Crooks estimator for
the free energy is not biased, while the Jarzynski estimator
is. As the amount of noise or coarse-graining increases, the
signal-to-noise ratio decreases, and the slope of the symmetry
function decreases. Since the intersection point of this straight
line with the work axis remains always equal to the free-energy
difference, the line undergoes a rotation with respect to the
point W = �F on the work axis. When the mean of the error
is nonzero, this straight line undergoes, in addition, a horizontal
translation by the amount ε, as shown in Fig. 1.

Notice that the change of slope can be equivalently
described by a change of temperature. One can thus introduce
an effective temperature, equal to the temperature of the heat
bath T divided by ν(σ 2

SN) and therefore larger than T since
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FIG. 1. Sketch of the effect of Gaussian uncorrelated noise on
symmetry functions, or, equivalently, on Crooks’ fluctuation theorem,
for a Gaussian work distribution. If ε = 0, then the measurement noise
produces a decrease of the slope of the symmetry function Y m (green
dotted line) as compared to Y (red dashed line). This change of slope
(a rotation of the line) does not affect the intersection point with
the work axis, which corresponds to the free-energy difference, �F .
When ε �= 0 however, the symmetry function should be in addition
translated by ε (black solid line). All energies are measured in units
of β−1.

ν(σ 2
SN) � 1 according to Eq. (41). In the linear response

regime, the same effective temperature will appear in the
ratio of the response and correlation functions [31]. It is
important to appreciate, however, that this notion of effective
temperature only applies to situations like the present one
where the correction factor in the Crooks relation, namely
�(Wm), is linear. In general, this function is not linear, as will
become clear in the next examples and in the section reporting
numerical results. In such cases, this effective temperature is
less meaningful.

To summarize the results of this section, we have shown
that an additive correction to the work due to an instrument
error or noise leads, in the case that the work and the
error are Gaussian distributed, with uncorrelated error, to a
multiplicative correction for the temperature, in other words,
to an effective temperature. In addition, if the error has nonzero
mean, the free-energy estimator is shifted by an amount
precisely equal to the mean value of the error.

B. Uncorrelated Gaussian error with
arbitrary work distribution

We now show how to correct for measurement errors
when the true work distribution is arbitrary, keeping the
same assumptions for the error (uncorrelated and Gaussian
distributed). We use Eq. (31) in order to relate the probability
distribution of the measured work to the probability distribu-
tion of the true work. Let us implement a shift by an arbitrary
quantity w in the argument of this distribution:

P m(Wm − w) =
∫

dEP (Wm + E − w)ρ(E), (42)

P̃ m(−Wm − w) =
∫

dEP̃ (−Wm − E − w)ρ̃(−E)

= e−β(Wm−�F+w)
∫

dEP (Wm

+ E + w)ρ(E)e−βE, (43)

where we have used Eq. (34) in the last step of
Eq. (43).

After the changes of variables y = Wm + E − w in (42)
and y = Wm + E + w in (43), we get:

P m(Wm − w) =
∫

dyP (y)ρ(y − Wm + w), (44)

P̃ m(−Wm − w) = e−β(Wm−�F )

×
∫

dyP (y)ρ(y − Wm − w)e−β(y−Wm)

= e−β(Wm−�F )−2wε/σ 2
∫

dyP (y)

× ρ(y − Wm + w)e−(β−2w/σ 2)(y−Wm),

(45)

where we have used, in the last step of Eq. (45), the explicit
form of the error distribution, Eq. (36). It is now clear that
choosing w = βσ 2/2 leads to:

ln
P m(Wm − βσ 2/2)

P̃ m(−Wm − βσ 2/2)
= β(Wm − �F + ε). (46)

Let us first analyze the case of unbiased error, ε = 0. We
observe that, remarkably, the shift in Eq. (46) removes the bias
that was present in the Crooks estimator for measured work and
at the same time provides the correct slope for the fluctuation
theorem. Thus, the transformation of Eq. (46) solves in a
simple way two problems at once: the need to calibrate the
experiment against noise and the problem of the bias in the
estimator. We shall illustrate this method using simulations in
Sec. IV D.

This result agrees with the results of Ref. [4], which is
concerned with the inference of free energies from partial work
measurements in the context of single-molecule experiments.
The authors of this work showed that a shift of the type of
Eq. (46) can be used to exploit measurements of the “wrong”
work in a symmetric dual trap system, in which one of the traps
is fixed, while the other one is moved. Such a transformation
allows us to recover the correct work distribution when the
work distribution is Gaussian and to eliminate the biases in the
Jarzynski and Crooks estimators. However, as recognized by
the authors, in the case of an asymmetric setup of the traps,
a shift of this kind does not permit us to recover the correct
work distribution (see Ref. [4] for details). This corresponds
to our biased case, with ε �= 0, where the elimination of the
bias in the Crooks estimator is in principle not possible, at
least not in the absence of additional information on the error
distribution [23].

C. Correlated Non-Gaussian error distribution

Before moving to more complicated cases where the error
is correlated with the true work and is non-Gaussian, let us
consider a simple extension of the previous example. Let us
assume that the error E is of the form

E = αWm + Eu, (47)
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GARCÍA-GARCÍA, LAHIRI, AND LACOSTE PHYSICAL REVIEW E 93, 032103 (2016)

so the error is now the sum of a part which is proportional to the
measured work, and another part Eu, which is still uncorrelated
with the true work W . By construction, the previous case is
recovered for α = 0. Note that when W is non-Gaussian, this
total error will also be non-Gaussian and correlated with W .

Let us introduce the probability distribution of the uncor-
related part of the error, ρu(Eu). As before with Eq. (29), we
consider the joint distribution

P m(Wm,Eu) = P m(Wm|Eu)ρu(Eu),

= P [(1 + α)Wm + Eu|Eu]

∣∣∣∣ ∂W

∂Wm

∣∣∣∣
Eu

ρu(Eu),

= (1 + α)P [(1 + α)Wm + Eu|Eu]ρu(Eu).
(48)

Now, using the property that the variable Eu is uncorrelated
with the true work W , we obtain

P m(Wm,Eu) = (1 + α)P [(1 + α)Wm + Eu]ρu(Eu). (49)

An important point is that Eqs. (22) and (26) do not hold in
terms of ρu(Eu) and P m(Wm,Eu), respectively, since Eu is
not the total error but only its uncorrelated part. For instance,
using Eq. (26) and recalling that E = αWm + Eu, we will now
have:

�α(Wm) = − 1

β
ln〈e−βE |Wm〉

= αWm − 1

β
ln〈e−βEu |Wm〉

≡ αWm + �α=0[(1 + α)Wm], (50)

where we have used the subscript α to make explicit the
dependence on this parameter, and we have noticed, given
that Eu is uncorrelated from W , that the second term in the
second line of Eq. (50) is given exactly by Eq. (33) with the
substitution Wm → (1 + α)Wm. Note that this result could
also be derived by directly computing the joint probability of
Wm and E, which can be easily done as follows:

P m(Wm,E) =
∫

dEuP
m(Wm,Eu)δ(E − αWm − Eu)

= (1 + α)P (Wm + E)ρu(E − αWm), (51)

where we have used Eq. (49) to get the last line. Thus, we have
for P m(Wm)

P m(Wm) = (1 + α)
∫

dEP (Wm + E)ρu(E − αWm). (52)

Introducing P m(E|Wm) = P m(Wm,E)/P m(Wm), and using
directly Eq. (26) together with Eqs. (51) and (52), we again
obtain (50).

Notice that, in particular, when the distributions of the true
work and Eu are Gaussian distributed, one obtains

�α(Wm) = αWm + ϑ(σ 2
SN)

[
(1 + α)Wm − �F − σ 2

SNε
]

= αν
(
σ 2

SN

)
Wm + ϑ

(
σ 2

SN

)(
Wm − �F − σ 2

SNε
)

≡ αν
(
σ 2

SN

)
Wm + �α=0(Wm). (53)

with ϑ , ν, and σ 2
SN defined as before but now in terms of the

variance of the uncorrelated part of the error, σ 2
u .

It is worth noting, as we see from Eq. (50), that this type of
correlation only introduces a stretching of the original �α=0

via a rescaling of Wm, plus an additional correction which is
linear in Wm. In particular, in the Gaussian case the stretching
can be reabsorbed in the linear correction because � is linear
in Wm for α = 0.

For the case of non-Gaussian work distributions but with a
Gaussian distribution of Eu, it is interesting to seek a relation
of the type of Eq. (46) as improved estimators of free energy.
Proceeding in the same way as before, the expressions for the
forward and reverse probability distributions of the measured
work shifted by an amount w are as follows:

P m(Wm − w)

=
∫

dEuP
m(Wm − w,Eu)

= (1 + α)
∫

dEuP [(1 + α)(Wm − w) + Eu]ρu(Eu)

(54)

and

P̃ m(−Wm − w)

=
∫

dEuP̃
m(−Wm,−Eu)

= (1 + α)e−β((1+α)(Wm+w)−�F )

×
∫

dEuP [(1 + α)(Wm + w) + Eu]e−βEuρu(Eu), (55)

where we have used the relation

ρu(Eu) = ρ̃u(−Eu), (56)

which holds under the same assumptions leading to Eq. (20),
as shown in Appendix B.

Let us now assume ρu(Eu) has a mean ε and a variance σ 2
u ,

and for any arbitrary w, let us introduce the shifted symmetry
function:

Ym
sh (Wm,w) = ln

P m(Wm − w)

P̃ m(−Wm − w)
. (57)

It can be shown that when w = w∗ = βσ 2
u

2(1+α) , this shifted
symmetry function has a simple form:

Ym
sh (Wm,w∗) = β[(1 + α)Wm − �F + ε]. (58)

It is important at this point to contrast this result with that
obtained in Eq. (46) for α = 0. Although one obtains again a
linear relation for the shifted symmetry function, the slope is
not 1 (in units of kBT ) but 1 + α. Since a priori neither ε nor
σ 2

u are known, one should vary the shift parameter w in a plot
of Ym

sh (Wm,w) versus Wm, until the data points collapse on a
straight line. From the value of the slope of that line, the value
of α can be inferred, and from the actual value of w∗, the value
of σ 2

u can then be deduced. To apply this method, it is important
to be sure that there is a unique value of the optimal shift w∗.
We address this point in Appendix C by proving that indeed
there is a unique optimal shift so that for no other value of w,
the symmetry function is a linear function of Wm. Naturally,
this proof includes the case α = 0 considered previously.
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When ε = 0, this transformation of the symmetry function
leads to a complete calibration since no other parameter
needs to be fixed, and the correct estimate of the free-energy
difference can be recovered, as we shall illustrate numerically
in Sec. IV E. However, when ε �= 0, the estimator is biased
by the mean of the error in a way which cannot be fixed in
the absence of additional information, as also found in the
previous case.

IV. APPLICATIONS TO SPECIFIC CHOICES OF
DYNAMICS FOR THE MEASURED VARIABLE

In this section, we shall apply the theoretical framework
developed in previous sections to some specific dynamics
for the measured variable. Before we do so, we discuss the
choice of measured variables in single-molecule experiments
(typically position or force). Then, assuming the position is
the measured variable, we discuss the consequences of the
particular choice of the relation between the dynamics of the
measured position and that of the true position. Here we shall
restrict ourselves to two separate cases:

(a) Simple additive noise: The measured position xm and
the true position x are related by

xm(t) = x(t) + η(t). (59)

(b) Additive noise with delay: The measured position xm and
the true position x are related by

τr ẋ
m = x − xm + η(t). (60)

From an experimental point of view, case (a) describes
purely random measurement errors, which corresponds to the
assumption that η and x are uncorrelated. In contrast, case (b)
describes a case where these variables are correlated because
the measurement device introduces a delay between x(t) and
its measured value, xm(t). Clearly, both cases are relevant
experimentally.

Furthermore, for both dynamics (a) and (b), we assume
the distribution of x(0) to be an equilibrium one, while that
of xm(0) is not but corresponds to a stationary nonequilibrium
distribution. The system can be prepared in such a state at t = 0
by starting the evolution at a time t = −∞ in the absence
of driving, so the distributions of x(0) and xm(0) are both
stationary. Naturally, both variables x(0) and xm(0) may still
be correlated with each other.

A. Choice of measured variable: Position vs force

Before implementing the above dynamics, let us now
discuss a practical question regarding the choice of measured
variables in single-molecule experiments. In a first setup,
where the position is measured, the Hamiltonian which is
typically used has the form: H (xmol,x; λ) = Hmol(xmol) +
Hcoup(xmol,x) + Utrap(x; λ), where Hmol(xmol) describes the
macromolecule under study (a DNA filament or RNA hairpin,
for instance), with xmol labeling the relevant degrees of
freedom of that system. This molecule is attached to a bead
which is held in an optical trap, and the energy of the bead is
given by Utrap(x; λ), where x is the position of the bead and λ

the position of the trap center. Finally, Hcoup(xmol,x) accounts
for the coupling between the molecule and the bead.

Usually, the calibration of optical tweezers relies on a har-
monic approximation for the trapping potential, Utrap(x; λ) =
κ(x − λ)2/2, where κ denotes the stiffness of the trap and λ

the position of its center. In this case, the work is

W [X] =
∫ τ

0
dtλ̇(t)∂λH (xmol(t),x(t); λ(t))

=
∫ τ

0
dtλ̇(t)∂λUtrap(x(t); λ(t))

= κ

∫ τ

0
dtλ̇(t)[λ(t) − x(t)],

which does not depend explicitly on the degrees of free-
dom of the molecule under study characterized by Xmol =
{xmol(t)}τt=0. In this case, the work on the system is exactly
equal to the work on the bead, since the trap is the only term
of the Hamiltonian which depends on λ. The structure of the
error in this situation is very simple:

E[X,Xm] = κ

∫ τ

0
dtλ̇(t)[xm(t) − x(t)], (61)

which shows that the error increases with the driving speed λ̇

and accumulates with the duration of the experiment τ .
One limitation of such a setup where the position is

measured lies in the harmonic approximation used for the
trapping potential, an approximation which is expected to fail
at large distances from the bead to the center of the trap.
Furthermore, recent studies have found great variability in the
trap stiffness as a function of the position, even in the region
where a constant stiffness was expected [32]. To overcome
such issues, a different setup is often preferred, where no
assumption on the form of the trapping potential is needed.

In this alternative setup, the force rather than the position,
is directly measured from the change in the momentum flux of
the light beam impinging on the optical trap [33]. There is no
need to assume a particular form of the trapping potential: one
rather measures the force signal, f m(t), which also has some
noise (i.e., f m �= f , the true force exerted by the optical trap).
The position of the center of the trap is the control parameter
which we assume to be error free as we did so far. In some
setups one does not have direct access to the position of the trap
and one has also to infer it with some error, but we dismiss that
possibility here and assume that this is our control parameter.1

For this setup the work reads:

W [F] =
∫ τ

0
λ̇(t)f (t)dt, (62)

with F = {f (t)}τt=0. Note that the trapping potential
Utrap(x; λ) ≡ Utrap(x − λ), thus, f = −∂xUtrap = ∂λUtrap, and
the definition (62) coincides with the Jarzynski work [1],
satisfying the nonequilibrium work theorem in the form given
by (1). In this case the structure of the error is also very simple:

W [F] = Wm[Fm] −
∫ τ

0
dtλ̇(t)[f m(t) − f (t)]. (63)

1In certain experiments one fixes the force letting the trapping
velocity free. In that case a feedback mechanism is necessary. We
do not address that case here.
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It is worth noting that both Eq. (61) and Eq. (63) have the
same structure. In addition, note that the assumption that λ is
error free is not very dangerous. This can be seen as follows.
In the first setup, one can redefine the distances and consider
the error in measuring λ − x instead of x alone. In the second
case, one does not need to know the value of λ in order to
calculate the work because the force is directly recorded. In
both cases what remains free is the pulling velocity, λ̇, which
is very well controlled even if λ itself is not.

Since it is a rather simple matter to switch between notations
for the force setup and that for the position setup, we limit
ourselves in the rest of the paper to only one case, which we
chose to be the position setup.

B. Corrected Jarzynski estimator

Let us derive the correction to the Jarzynski estimator in the
presence of measurement error η within dynamics (a) defined
in Eq. (59).

〈e−βWm〉� =
∫

DXmPm[Xm]e−βWm[Xm]

=
∫

DXmDXPe[Xm|X]P[X]e−βWm[Xm]

=
∫

DXP[X]e−βW [X]〈eβE[Xm,X]|X〉�. (64)

In this case one has Pe[Xm|X] = P[ηηη|X] ≡ Pη[ηηη], where
Pη is the path probability density of the error trajectory
ηηη = {η(t)}τ0. Thus, since the error in Eq. (61) is a linear
functional of ηηη, it can be integrated explicitly. We thus have

〈e−βWm〉� = 〈e−βW [X]〉�eKη[κβλ̇]

≡ e−β(�F−(1/β)Kη[κβλ̇]), (65)

where we have used the Jarzynski equality, Eq. (1), and we
have introduced the generating functional of the cumulants of
Pη,Kη[J ] = ln

∫
DηηηPη[ηηη] exp[

∫
dtJ (t)η(t)]. From this, we

obtain the following estimate of the free energy, �F̂ (N ) as:

�F̂ (N ) = �F − 1

β
Kη[κβλ̇]. (66)

As stated before, the bias in the estimation of the free-energy
difference only depends on the statistical properties of the
error associated to measurement apparatus. This result is
fully compatible with the expression of the correction R =
kBT Kη[κβλ̇] obtained from Eq. (22) when ρ(E) is assumed
to be symmetric under time-reversal symmetry.

Let us discuss now the validity of the factorization property
Eq. (30) or, equivalently, of the convolution formula of
Eq. (31). To illustrate this, let us consider a simple case where
the optical trapping is assumed to be parabolic, whereas in
reality it is not. In that case, the measured work is

Wm = κm

∫ τ

0
dtλ̇(t)[λ(t) − xm(t)]

= κm

∫ τ

0
dtλ̇(t)[λ(t) − x(t) − η(t)], (67)

while the true work reads

W =
∫ τ

0
dtλ̇(t)∂λUtrap(λ − x), (68)

where we have introduced the experimental stiffness of the
trap, κm, and the dynamics of Eq. (59) with η(t) uncorrelated
with x(t). Indeed, the error at time τ,E = W − Wm, is in
general correlated with the values of W not only at time τ but
even at earlier times. This is very easy to see by noting, from
Eq. (67), that we have λ(t) − x(t) = Ẇm(t)/κmλ̇(t) + η(t) ≡
[κmλ̇(t)]−1[Ẇ (t) − Ė(t)] + η(t). Substituting this back in (68)
we clearly see that W and E are in general correlated in a highly
nonlocal way in time even in this simple case, so Eqs. (30) and
(31) do not hold anymore.

It is worth noting, however, that there is a particular case
where one can still make the assumption that correlations are
local in time. This happens when the true trapping potential is
still parabolic, but the stiffness is not correctly estimated; its
value is κ �= κm. It is easy to see that in this case we have

W = κ

∫ τ

0
dtλ̇(t)[λ(t) − x(t)]

= κ

∫ τ

0
dtλ̇(t)[λ(t) − xm(t) + η(t)]

= κ

κm
κm

∫ τ

0
dtλ̇(t)[λ(t) − xm(t)] + κ

∫ τ

0
dtλ̇(t)η(t)

≡ κ

κm
Wm + Eu, (69)

where Eu = κ
∫ τ

0 dtλ̇(t)η(t) is still uncorrelated from W ,
while the error E = W − Wm = [(κ/κm) − 1]Wm + Eu is
not. This shows that miscalibration of the trap stiffness
introduces a correlated error of the form considered before
in Eq. (47), with α given by α = κ/κm − 1.

C. Fraction of second-law violating trajectories
in terms of measured work

Clearly, the fraction of trajectories that transiently violate
the second law differs for the true and the measured works.
For Gaussian distributed work, this fraction is analytically
calculable, following the method of Ref. [34]. We begin with
the relation∫

dWmP (Wm)e−βWm = e−β(�F−R)

= 1√
2πσ 2

Wm

∫
dWm exp

[
− (Wm − 〈Wm〉)2

2σ 2
Wm

− βWm

]
.

(70)

A simplification of this relation leads to

1
2βσ 2

Wm = 〈Wm〉 − �F + R, (71)

where R is given by Eq. (37). Now we can readily calculate the
fraction of atypical trajectories (i.e., the ones that transiently
violate the second law) by integrating the work probability
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distribution from −∞ to �F :

f
m = 1√

2πσ 2
Wm

∫ �F

−∞
dWm exp

[
− (Wm − 〈Wm〉)2

2σ 2
Wm

]

= 1

2
erfc

[ 〈Wm〉 − �F√
2σ 2

Wm

]
. (72)

Let us assume that the error in the measured work has nonzero
mean ε. Using the definition of measured work and the
fluctuation theorem for true work, we have:

〈W 〉 = 〈Wm〉 + ε = �F + 1
2βσ 2

W . (73)

Using (71), one then obtains

f
m = 1

2
erfc

[
1

2

〈Wm〉 − �F√
β−1(〈Wm〉 − �F + R)

]

= 1

2
erfc

⎡
⎣1

2

1
2βσ 2

W − ε√
1
2

(
σ 2

W + σ 2
)
⎤
⎦. (74)

We note that

f
m = 1

2
erfc

[
β

2
√

2

σ 2
W − 2β−1ε√
σ 2

W + σ 2

]
� 1

2
erfc

[
β

2

√
σ 2

W

2

]
= f,

(75)

if ε � 0. In that case, measurement errors cause an overes-
timation of the fraction of trajectories transiently violating
the second law. Furthermore, note that f

m > 1/2 only if the
argument of the error function is negative. Thus, we will
observe apparent violations of the second law if the error is
positive and sufficient large so ε > βσ 2

W/2. In this case, the
mean of the measured work is less than �F .

It is instructive to illustrate this result with a simple
example. Consider a Brownian particle following the Langevin
equation

ẋ = −κ(x − λ) + ξ (t), (76)

where ξ (t) is the Gaussian random white noise: 〈ξ (t)〉 = 0 and
〈ξ (t)ξ (s)〉 = 2T δ(t − s). The system is initially at equilibrium
with a heat bath at temperature T and is thereafter perturbed
by a time-dependent linear protocol λ(t) = at/τ ≡ bt , where
b = a/τ . The average work done on the particle is given by

〈W 〉 =
∫ τ

0
λ̇(λ − 〈x〉)dt

= b

∫ τ

0
(bt − 〈x〉)dt. (77)

Using Eqs. (76) and (77), we arrive at

〈W 〉 = b2

κ

[
τ − 1 − e−κτ

κ

]
. (78)

With the present form of trapping potential, it is simple to
check that the partition function is independent of λ and, as
a result, �F = 0. Thus, to allow f

m to be greater than 1/2,
one should have 〈Wm〉 < 0 or, equivalently, ε > 〈W 〉, which

FIG. 2. Plots of measured and true work distributions (work
being measured in unit of kBT ), when τ = 20 and 〈η〉 > b/κ . The
parameters used are b = 0.5, κ = 1, and 〈η〉 = 1.

means:

ε >
b2

κ

[
τ − 1 − e−κτ

κ

]
. (79)

Using the inequality er � 1 + r which holds for any r , it can be
easily checked that the right-hand side is always non-negative.
If the measured position xm and the true position x are related
by Eq. (59) assuming η is another Gaussian distributed white
noise, then the mean of η is related to ε as

〈η〉 = ε

bτ
. (80)

Then the condition (79) translates to

〈η〉 >
b

κ

[
1 − 1 − e−κτ

κτ

]
. (81)

For a large-enough value of τ , we then have the condition
〈η〉 > b/κ . When this condition is satisfied, we expect the
mean of the Gaussian distribution of Wm to lie to the left of the
Wm = 0 axis. This is shown in Fig. 2, where the distributions
for the true work and the measured work have been plotted,
with b = 0.5, κ = 1, and 〈η〉 = 1. Clearly, the mean of the
distribution for Wm lies to the left of the Wm = 0 axis, unlike
for the distribution of the true work.

This example shows that a sufficiently large and positive
mean error drastically alters our estimation of the fraction of
trajectories that violate the second law. Naturally, nothing of
that sort would occur if ε < 0. Below, we test the main results
of the paper regarding modified fluctuation theorems obtained
in previous sections numerically. We start with the case of
uncorrelated Gaussian error and then we consider an example
of correlated non-Gaussian error.

D. Numerics for the case of uncorrelated Gaussian errors

We begin by verifying the relation (46), for a system that is
subjected to the time-dependent potential

V (x,t) = 1
2κ[x − λ(t)]2 − 1

2x2 + 1
4x4, (82)

where the first term on the right-hand side represents the force
acting on the system due to the harmonic trap, the center of
which is positioned at λ(t), and κ is the stiffness constant of
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the trap. The second and third terms represent a double-well
potential that the particle sees in addition to the trap potential.
The system follows the overdamped Langevin equation of
motion:

ẋ = −∂xV (x,t) + ξ (t), (83)

ξ (t) being the Gaussian thermal white noise with zero mean:
〈ξ (t)〉 = 0,〈ξ (t)ξ (t ′)〉 = 2T δ(t − t ′).

We have chosen the parameter λ(t) to be A sin ωt , which is
a simple sinusoidal drive of amplitude A and frequency ω. The
protocol is applied for a time τ = π/2ω, which is one-fourth
of the drive period. The error in the measurement corresponds
to case (a), with the additional assumption that η is a Gaussian
white noise of mean zero and of autocorrelation function
〈η(t)η(t ′)〉 = σ 2

η δ(t − t ′). The error in the measurement of the
work is also Gaussian, since it is linear in η:

E =
∫ τ

0
dtλ̇(t)η(t). (84)

We can then derive the variance of the error to be

σ 2 = σ 2
η

∫ τ

0
dt

∫ τ

0
dt ′δ(t − t ′)λ̇(t)λ̇(t ′)

= σ 2
η A2ω2

∫ τ

0
dt cos2 ωt

= σ 2
η A2ωπ/4 (85)

for τ = π/2ω. With the choice of parameters σ 2
η = 0.5, A = 2,

and ω = 1, we obtain σ 2 � 1.571. The required shift in Wm

is R = βσ 2/2 � 0.785.
Figure 3 shows the distributions of the true and the measured

works for the above potential for forward and reverse drivings.
The parameters chosen have been mentioned in the figure
caption. The non-Gaussian nature of these distributions is
apparent, as is the bias in the determination of free energy
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FIG. 3. The distributions P (W ), P̃ (−W ), P m(W ), and P̃ m(−W )
for the above potential. They are clearly non-Gaussian. The intersec-
tion point of P (W ) and P̃ (−W ) gives the value of �F � 0.82. The
solid vertical line shows the value of W at the intersection of P (W )
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FIG. 4. Symmetry functions for the true work Y (W ) (red filled
circles) for measured work Y m(Wm) (brown solid line) and shifted
symmetry functions of measured works Y m

sh (Wm,w) with intermediate
(dashed line) and optimal (blue filled squares) values of the shift w,
as defined in Eqs. (8), (9), and (57), respectively. All energies are
measured in units of β−1. The black solid line is a linear fit for Y (W ).
We have chosen σ 2

η = 0.5, all other parameters being the same as
in Fig. 3. The free energy, obtained from the Jarzynski equality is
�F � 0.82.

from Crooks’ relation. Indeed, the crossing point of P (W )
and P̃ (−W ) (which gives the free-energy change �F � 0.82)
clearly differs from that of the distributions P (Wm) and
P̃ (−Wm). We also note that the variance of measured work in
either the forward or the reverse process is higher than that of
the true work.

In Fig. 4, we show the symmetry functions for the true and
the measured works, as a function of W , which are denoted
by Y (W ) and Ym(Wm), respectively. The black solid line is
the linear fit for Y (W ), which as expected corresponds to a
straight line of slope one. In contrast, the symmetry function
Ym(Wm) for the measured work is not a linear function as
expected theoretically.

In view of the exact relations derived in Eqs. (44)–(46), we
introduce shifted symmetry functions defined as in Eq. (57).
Initially the appropriate value of w is unknown, but it is
possible to tune this parameter to find the point where w = R.
Here, since ε = 0, the correct value is R = βσ 2/2 � 0.785,
at which point, according to Eq. (46), the shifted symmetry
function has a simpler form, namely:

Ym
sh (Wm,R) = β(Wm − �F ). (86)

In Fig. 4, these shifted symmetry functions are shown for
intermediate values of w and for the most appropriate value
w = R, which makes the data points collapse on the black line
of slope 1. This shows that at least in this case where ε = 0,
it is indeed possible to tune the value of w to infer the correct
value of the free-energy difference using only the noisy data
of measured works. The correct value of the free energy in this
simulation is �F ≈ 0.82, which corresponds well to the point
where the symmetry function of the true work and the shifted
symmetry function of the measured work intersect the W axis.
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In case we had ε �= 0, we would be able to collapse the data on
a straight line but would not be able to infer the correct �F .

E. Numerics for the case of correlated non-Gaussian error

We now verify numerically our results obtained for non-
Gaussian correlated error of the type E = Eu + αWm. This
kind of error can arise in two situations: First, when there is a
miscalibration of the trap stiffness used for the evaluation of the
measured work, as discussed in Sec. IV B. Second, when the
relation between the measured position and the true position
is modified with respect to the one given by Eq. (59). It can be
shown that the correct modification compatible with an error
of the form E = Eu + αWm is

xm = x + αλ(t) + η

1 + α
, (87)

where as before λ denotes the position of the trap, while η

represents a random process which is uncorrelated from x(t).
In our numerical simulations, we have implemented the

second case for convenience. In Fig. 5, we have plotted the
symmetry functions for the true and the measured works (filled
circles and solid line in brown, respectively). Our parameters
are the same as in Fig. 4. As in the case of Fig. 4, the symmetry
function for Wm is not a linear function of Wm.

Improved free-energy estimators can be constructed using
shifted symmetry functions defined in Eq. (57) and by tuning
the shift parameter w until the data points collapse on a straight
line. According to Eq. (58), the slope of the straight line at the
collapse can be used to determine α, while the optimal value
of w provides information on σ 2

u the variance of Eu, since they
are related by w∗ = βσ 2

u /[2(1 + α)]. From the linear fit of the
data points for the optimal shift, we obtain a slope of 1.82,
which gives α = 0.82, in agreement with the actual value of
0.8. In the inset of Fig. 5, we show the plot for the χ2 values
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FIG. 5. Symmetry functions for Wm without shift (brown solid
line), intermediate shift w = 0.22 (violet dashed line), and optimal
shift w∗ = 0.44 (blue filled squares). The black solid line is the linear
fit for the data points for optimal shift. The slope of this line is 1.82,
which is very close to the actual value 1.8. The inset shows a plot
of the χ 2 of a linear fit of Y m(Wm,w) for various values of w. The
minimum is reached at the optimal value w = w∗. Parameters: Same
as in Fig. 4.

for this linear fit with the minimum of the plot coinciding with
the optimal value w∗ � 0.44. This confirms that this method
can be used practically for determining α and σ 2

u .

F. Correlated error due to finite delay in measurements

We next turn our attention to symmetry functions for
measured work, when the measurement outcome is obtained
after a time delay as described by case (b) in Eq. (60). We
rewrite the equations for x and xm below:

γ ẋ = κ(λ(t) − x) + ξ (t);
(88)

τr ẋ
m = x − xm + η(t).

Both ξ (t) and η(t) are Gaussian white noises of mean zero
and of autocorrelation function 〈ξ (t)ξ (t ′)〉 = 2γ T δ(t − t ′) and
〈η(t)η(t ′)〉 = σ 2

η δ(t − t ′). We let the system evolve under these
two equations in the absence of driving, λ = 0, for a time much
larger than γ /κ as well as τr , so the true position variable x is
at equilibrium at time t = 0, while the measured position xm

is in a nonequilibrium steady state.
Due to the delay, the state variable xm obeys a non-

Markovian dynamics, and, as a result, the error is correlated
with the true work in a complex way. Linear Langevin systems
with time delays have been studied extensively in the literature
on feedback systems [35,36]. In that respect, our problem is
simpler in that there is no feedback since the first equation in
Eq. (88) does not contain the variable xm. Yet the correlations
between the error E and the true work are more complex than
that considered in Eq. (47) in terms of the parameter α. In
particular, the error does not transform under time reversal
as ρ(E) = ρ̃(−E) because the quantity Se which has been
assumed to vanish in Sec. II does not vanish here.

Fortunately, due to the linearity of the equations, the true
and the measured works are also Gaussian distributed, being
linear in x and xm, respectively. Thus, we only need to focus
on the mean and the variance of the measured work without
having to consider the statistics of the error. The mean and
the variance of the measured work can be obtained by direct
integration of Eq. (88) after some algebra, which is detailed in
Appendix D. From the formal expressions, one notices that the
mean 〈Wm〉 as well as the variance σ 2

Wm are even under time-
reversal symmetry, which implies P (Wm) = P̃ (Wm). Using
the fact that the distributions are Gaussian, one then arrives at
the relation

Ym(Wm) ≡ ln
P (Wm)

P̃ (−Wm)
= 2Wm〈Wm〉

σ 2
Wm

. (89)

The slope of the symmetry function is therefore:

βeff = 2〈Wm〉
σ 2

Wm

. (90)

It can be interpreted as an inverse effective temperature in
view of the Crooks relation Ym(Wm) = βeffW

m, which takes
this form since the free-energy difference is zero in the present
setup. The symmetry functions for different values of τr for
the applied linear protocol λ(t) = at/τ have been plotted in
Fig. 6. As expected, all these curves are straight lines going
through the origin, which confirms the interpretation in terms
of effective temperatures. Note that this effective temperature
depends on both τr and τ as we discuss now.
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FIG. 6. Symmetry functions Y m(Wm) for various values of the
relaxation time τr . The solid line is of slope σ 2

W/(σ 2
u + σ 2

W ) = 0.878,
as expected when the error becomes uncorrelated with the work. The
other parameters are a = 1, kBT = 1, σ 2

η = 0.1, and τ = 1.

As τr is increased, the inverse effective temperature
increases, i.e., the effective temperature decreases. This is
expected since by increasing τr , the fluctuations of xm become
more and more smooth as a result of filtering the fluctuations of
the true position for longer measurement times. This filtering
translates into a decrease of the fluctuations of the measured
position, i.e., a decrease of their effective temperature. For
τr → 0 (red curve), we recover the effective temperature,
which has been obtained in Eq. (41) for the case of dynamics
(a). That effective temperature is necessarily larger than the
bath temperature and is shown by the black solid line.

From the point of view of the measured position, the true
position appears as a perturbation or as a driving force which
is imposed from the outside. This driving force imposes a new
time scale γ /κ on the dynamics of the measured position,
which would evolve otherwise with the time scale τr . Accord-
ing to Ref. [22], the regime for which an effective temperature
is expected is the one for which τr � γ /κ , which corresponds
to the case where we find a small effective temperature.
Interestingly, we also have a well-defined effective temperature
in the other regime τr � γ /κ , which we have analyzed before.

Naturally, our case differs from that of Ref. [22], which is
concerned with steady states, while ours does not. This can also
be seen from the dependence of our results on the time scale
associated with the duration of the driving τ . In Fig. 7, we show
the variation of the slope of Ym(Wm), namely βeff , as a function
of τr , when τ = 0.1. The other parameters are as mentioned
in the figure caption. We find a very good agreement with the
simulations in the full range of variation of τr . The same plots
for higher observation time, τ = 1, is shown in Fig. 8. Once
again, there is a good agreement with the numerics, which in
this case is a straight line of slope ≈0.95.

In the limit τr → ∞, one can show from the exact
expression of the slope of Ym provided in Appendix D that
it behaves as 2κτr/(2γ T + σ 2

η κ2), which correctly predicts
the slope of the straight line in Fig. 8.
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FIG. 7. Inverse effective temperature βeff as a function of the
relaxation time τr . The parameters are a = 1, τ = 0.1, σ 2

η = 0.1, and
kBT = κ = γ = 1. The green dotted line is an exact evaluation using
Eq. (90) and Appendix D, while the red solid line is the simulation
curve.

V. RELATION TO INFORMATION THEORY
AND FEEDBACK

A. Equilibrium initial conditions

The corrections � and R are factors modifying the fluc-
tuation theorems in the presence of coarse-graining or noise.
As shown below, similar factors have been introduced before
in the context of fluctuation theorems with feedback [37,38]
and on related second-law-like inequalities with information
[35,36].

Let us consider the probability for a true trajectory in phase
space, P[X], and the one for the measured trajectory Pm[Xm].
These two probabilities are related by

Pm[Xm] =
∫

DXPe[Xm|X]P[X], (91)
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FIG. 8. Same plot as above, with τ = 1, other parameters being
the same.
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where the difference between both distributions is contained
in Pe. In particular, when the measurement process is free of
error, Pe[Xm|X] = δ[Xm − X], then Pm[Xm] = P[Xm].

In the experiment, only the coarse-grained trajectory Xm is
available. The amount of information provided by Xm about
the true trajectory X is quantified by the mutual information

Ix =
∫

DXDXmP[Xm,X] ln
P[Xm,X]

P[X]Pm[Xm]
, (92)

where P[Xm,X] is the joint path probability of true and mea-
sured trajectories. In particular, if Xm and X are independent
random variables, Ix = 0, implying that no information can
be extracted on X from the knowledge of Xm. Introducing the
stochastic mutual information, Ix[Xm,X], through the relation

Pm[Xm]

Pe[Xm|X]
= e−Ix [Xm,X], (93)

we can write the mutual information simply as Ix =
〈Ix[Xm,X]〉 � 0. Then, combining Eqs. (93) and (10), we
may write

Pm[Xm]P̃[X̃] = P[Xm,X]e−β(W [X]−�F )−Ix [Xm,X]. (94)

It is worth noting that, in terms of the true work, a Jarzynski
relation as for feedback processes [38] follows immediately:

〈e−β(W [X]−�F )−Ix [Xm,X]〉� = 1. (95)

Since the Jarzynski relation holds in terms of W [X], the
second law derived from Eq. (95), β(〈W 〉 − �F ) � −Ix is
uninformative, since Ix � 0 while β(〈W 〉 − �F ) � 0 holds
in this case. We shall thus turn instead towards a modified
Jarzynski relation in terms of the measured work, which is
experimentally accessible.

A key point is to recognize that the lack of knowledge
on the system is represented by two contributions. One is, of
course, the error in the measurement of the true trajectory.
The second is, as stated above, the mutual information which
quantifies how much one can infer about the true trajectories
from the measured ones. We can thus introduce a unified
quantity measuring both effects as

�x[Xm,X] = βE[Xm,X] + Ix[Xm,X]. (96)

With this, and using Eq. (5), Eq. (94) can be rewritten as

Pm[Xm]P̃[X̃] = P[Xm,X]e−β(Wm[Xm]−�F )−�x [Xm,X]. (97)

We thus have after direct integration

〈e−β(Wm[Xm]−�F )−�x [Xm,X]〉� = 1. (98)

Comparing the Jarzynski relation for feedback processes
[38] with Eq. (98), we see that there is a similar structure,
despite the fact that there is no feedback in our case. An
important difference between both cases is that 〈�x〉 does
not have a definite sign, because there is no particular sign
for the measurement error. However, if the distribution of
the measurement errors has non-negative mean, then 〈�x〉
is non-negative, since Ix � 0. It is also interesting to note, by
simple inspection of Eq. (6), that exp(βR) is the analog of
the efficacy parameter introduced in Ref. [38] for feedback
processes and denoted γ in that reference.

B. Generalization to the case of nonequilibrium
initial distribution

In this subsection only, we extend the results of previous
sections to situations where the initial distribution of the
true variable x(0) is not an equilibrium one but rather an
arbitrary distribution. To emphasize this difference, let us
now denote the corresponding full trajectory with a prime
as X′ = {x(t)}τt=0 to distinguish it from the trajectory which
we had denoted X so far. When the initial condition x(0) is
not an equilibrium one, the modified Crooks relation becomes
[39,40]

P̃ [X̃′]
P [X′]

= e−β(W−�F )+�D, (99)

where �D ≡ D(xτ ,τ ) − D(x0,0), with

D(xt ,t) = ln
p(xt ,t)

peq(xt ,t)
. (100)

Note that this relation can equivalently be written as

P̃ [X̃′]
P [X′]

= e−β(W−�Fneq) (101)

if one introduces the nonequilibrium free energy [39,41]

Fneq(xt ,t) = E(xt ,t) − T s(xt ,t) = F (t) + T D(xt ,t), (102)

where s(xt ,t) is the stochastic entropy defined by s(xt ,t) ≡
− ln p(xt ,t) [3].

Although the initial distribution of the forward or the
backward process are assumed to be general nonequilibrium
distributions, we still assume that the initial distribution of the
backward process is the same as the final distribution reached
in the forward process. Proceeding the same way as before,
we arrive at the variant of the fluctuation relation

〈e−β(Wm−�F )+�D−�x 〉� = 1, (103)

which shows that deviations from the Jarzynksi relation appear
due to both uncertainties present in the initial and final
distribution (described by D) and in the trajectories themselves
(described by �x). Naturally, in the limit when the initial and
final distributions are at thermal equilibrium, �D = 0 and we
get back Eq. (98).

C. Error due to incorrect assumption of initial distribution

Let us consider a special situation in which the error is
only present in the initial distribution of the position. In other
words, while at the time t = 0 there is a difference between
the true position and the measured position; afterwards, there
is no error and we assume xm(t) = x(t) for t > 0. In this
case, the measured position is discontinuous at t = 0, as if it
was undergoing a sudden quench due to x(0). The true and
measured works are related through the relation

Wm = W + λ(0)[x(0) − xm(0)], (104)

since the quench causes a change in internal energy of
λ(0)[x(0) − xm(0)]. From this equation, the error in work is
given by E = λ(0)[xm(0) − x(0)]. If this error is uncorrelated
with the true work W , then the relation (31) again holds for
this case. Furthermore, W and E are Gaussian, and then the
entire analysis of Sec. III A goes through and we can define an
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effective temperature analogous to Eq. (41) from the slope of
the symmetry function of Wm, which will be entirely due to
the uncertainty about the initial condition.

VI. CONCLUSION

In this paper, we have studied thermodynamic inference
from coarse-grained data or noisy measurements based on
fluctuation theorems. We have focused on measurements
of stochastic work as in the Jarzynski or Crooks relations,
although much of the ideas discussed here would also apply
to other thermodynamic quantities like the entropy production
[23]. We have distinguished two forms of errors, one which
originates from the evaluation of the work itself and another
one which originates from the inaccuracy in the knowledge
of degrees of freedom which are needed to evaluate the work.
We have shown that the thermodynamic inference problem is
greatly simplified when the error made on the work is Gaussian
and uncorrelated. Interestingly, when the work is Gaussian
distributed, this problem can be reformulated in terms of an
effective temperature, which captures the effect of noise or
coarse-graining.

On the practical side, for Gaussian uncorrelated errors
of zero mean, a shift in the log-ratio of the probability
distributions is able to collapse the measurements points
on a straight line, thus providing a simple solution to the
thermodynamic inference problem of free energy. Remarkably,
this strategy still works when the error is of the form of
Eq. (47), in which case it contains an uncorrelated Gaussian
part. However, when the correlations between the work and the
error are due to measurement delays, this simple strategy fails
and the situation appears more complex. For that case, we
have introduced a solvable model based on linear Langevin
equations which includes measurements delays. We have
analyzed the model theoretically by deriving its effective
temperature and we have checked our analytical results using
simulations.

Finally, we note that the modified fluctuation theorems used
to construct improved estimators of free-energy differences
take a form which is very similar to that found in problems with
feedback. This connection appears quite promising to address
future thermodynamic inference problems. We hope that our
work will stimulate further theoretical and experimental work
in that direction.
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APPENDIX A: PROOF OF THE RELATION ρ(E) = ρ̃(−E)

The condition ρ(E) = ρ̃(−E), which we call the invariance
of the error distribution under time-reversal symmetry, can be
derived as follows. First, when Pe is invariant upon time-
reversal symmetry, Eq. (20) holds. Using Eq. (30) in (20), one
has

ln
ρ(E)

ρ̃(−E)
+ ln

P (W + E)

P̃ (−W − E)
= β(W + E − �F ). (A1)

On the other hand, the Crooks relation for the true work
distribution leads to ln P (W + E)/P̃ (−W − E) = β(W +
E − �F ), giving the expected result ln ρ(E)/ρ̃(−E) = 0. It
is important to notice that for time-reversal invariance of ρ(E),
time-reversal invariance of Pe is necessary but not sufficient.
Statistical independence between W and E is also needed.

Alternatively, the derivation can also be done at the level
of the trajectories, within the dynamics of case (a) as defined
in Sec. IV. Let us consider single-molecule experiments done
with harmonic traps, for which the error defined at the level of
the work is only a functional of X − Xm as in Eq. (61). Then
the statistical independence of W from E translates into the
independence of X − Xm from X. This implies thatPe[Xm|X]
is only a functional of ηηη = X − Xm, where ηηη denotes the
trajectory {x(t) − xm(t)}τ0. Thus,

DXmPe[Xm|X] = Dηηη

∣∣∣∣∂Xm

∂ηηη

∣∣∣∣Pη[ηηη|X]

= DηηηPη[ηηη], (A2)

where |∂Xm/∂ηηη| denotes the Jacobian of the transformation,
which is equal to 1. It follows from this that

ρ(E) =
∫

DXP[X]
∫

DXmPe[Xm|X]δ(E − E[X,Xm])

=
∫

DXP[X]
∫

DηηηPη[ηηη]δ(E − E[ηηη])

=
∫

DηηηP̃η[η̃ηη]δ(E + Ẽ[η̃ηη]) ≡ ρ̃(−E). (A3)

In the second step, we have used the property E[X,Xm] =
E[Xm − X] and we changed variables to ηηη using (A2). In the
third step, we used the normalization property

∫
DXP[X] = 1

and the property that Pe is invariant under time reversal, i.e.,
Pη[ηηη] = P̃η[η̃ηη]. The change in sign in the error upon time
reversal has also been used. Notice that this derivation relies
on dynamics (a) defined in Sec. IV and justifies a posteriori
the approach used in Sec. II.

In contrast to this derivation, the property ρ(E) = ρ̃(−E)
is not expected to hold in the case of dynamics (b).

APPENDIX B: PROOF OF EQ. (56)

In the case of correlated non-Gaussian error, we have

E = αWm + Eu, (B1)

and we still assume Pe[Xm|X] = P̃e[X̃m|X̃] [which again
is compatible with dynamics (a)], such that �(Wm,E) = 0.
Thus, we still can write:

ln
P m(Wm,E)

P̃ m(−Wm,−E)
= β(Wm + E − �F ). (B2)
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We have shown in the main text that the joint probability of
the measured work and the error reads in this case

P m(Wm,E) = (1 + α)P (Wm + E)ρu(E − αWm). (B3)

Correspondingly, we have

P̃ m(−Wm,−E) = (1 + α)P̃ (−Wm − E)ρ̃u(−E + αWm),
(B4)

which implies

ln
P m(Wm,E)

P̃ m(−Wm,−E)

= ln
P (Wm + E)

P̃ (−Wm − E)
+ ln

ρu(E − αWm)

ρ̃u(−E + αWm)

= β(Wm + E − �F ) + ln
ρu(E − αWm)

ρ̃u(−E + αWm)
, (B5)

where in the second step we have used the fluctuation theorem
for the true work distribution. Direct comparison between
Eqs. (B2) and (B5) leads to

ln
ρu(E − αWm)

ρ̃u(−E + αWm)
= 0, (B6)

which, due to the arbitrariness of E and Wm, means

ln
ρu(Eu)

ρ̃u(−Eu)
= 0, (B7)

for any value of Eu.
The connection with dynamics (a) can be more clearly seen

at the level of trajectories. Let us assume that the error E is
associated with a relation between the measured position and
the true one of the form given in Eq. (87). In this case, since
E = W − Wm ≡ k

∫ τ

0 dtλ̇(xm − x), we have:

Eu[Xm,X] = k

∫ τ

0
dtλ̇[(1 + α)xm − x − αλ], (B8)

= k

∫ τ

0
dtλ̇η,

which makes the uncorrelated error a functional of ηηη. In
addition, we note the property Eu[Xm,X] = −Ẽu[X̃m,X̃].

Let us consider the distribution of the uncorrelated error,
which is

ρu(Eu) =
∫

DXP[X]
∫

DXmPe[Xm|X]δ(Eu − Eu[Xm,X])

=
∫

DXP[X]
∫

DηηηPη[ηηη]δ(Eu − Eu[ηηη])

=
∫

Dη̃ηηP̃η[η̃ηη]δ(Eu + Eu[η̃ηη])

≡ ρ̃u(−Eu), (B9)

where in the second step, we have used the relation Eq. (A2).
The latter equation, namely Eq. (A2), still holds in the present
case since the Jacobian |∂Xm/∂ηηη| now equals (1 + α)−1, while
Pe[Xm|X] = (1 + α)Pη[η] so α-dependent factors cancel. In
the third step, the normalization condition

∫
DXP[X] = 1 has

been used together with the change of variable ηηη → η̃ηη and the
symmetry properties of Eu[ηηη] and Pη[ηηη].

APPENDIX C: UNIQUENESS OF THE LINEAR FORM OF
THE SYMMETRY FUNCTION

In this appendix, we prove that (i) there is a unique value
of w such that Eq. (58) holds and (ii) for no other value of w,
the symmetry function Ym

sh (Wm,w) is a linear function of Wm.
For the first point, we start from Eqs. (54) and (55) of the

main text. Doing the change of variable y = (1 + α)(Wm −
w) + Eu under the integral sign in Eq. (54), and y = (1 +
α)(Wm + w) + Eu in (55), we can write:

Ym
sh (Wm,w)

= −β�F + 2

σ 2
u

(1 + α)2wWm + 2ε

σ 2
u

(1 + α)w

+ ln

∫
dyP (y)e

− 1
2σ2

u
(y−ε)2+ 1

σ2
u

(1+α)(Wm−w)y

∫
dyP (y)e

− 1
2σ2

u
(y−ε)2+ 1

σ2
u

(1+α)(Wm+w−βσ 2
u /(1+α))y

= −β�F + 2

σ 2
u

(1 + α)2wWm

× 2ε

σ 2
u

(1 + α)w + �(Wm; w), (C1)

where we have introduced the function parametrized by w,

�(x; w) = ln

∫
dyP (y)e

− 1
2σ2

u
(y−ε)2+ 1

σ2
u

(1+α)(x−w)y

∫
dyP (y)e

− 1
2σ2

u
(y−ε)2+ 1

σ2
u

(1+α)[x+w−βσ 2
u /(1+α)]y

.

(C2)

For proving point (i), we need to show that w∗ =
βσ 2

u /2(1 + α) is the only real value of w such that �(x,w) ≡ 0
for all x ∈ R. Let us assume that there exists w1 �= w∗, such
that �(x,w1) ≡ 0. This would imply then that for w = w1, the
numerator and the denominator in Eq. (C2) are equal for all
x ∈ R or, equivalently, that

2
∫

dyP (y)e
− 1

2σ2
u

(y−ε)2+ 1
σ2
u

(1+α)[x−βσ 2
u /2(1+α)]y

× sinh

{[
− w1 + βσ 2

u

2(1 + α)

]
y

}
≡ 0, (C3)

where the last equality is obtained by substracting the
numerator and the denominator of (C2). Given the arbitrariness
of x, Eq. (C3) implies that the integrand has to be zero,
which implies that the hyperbolic sine identically vanishes or
that w1 = βσ 2

u /2(1 + α) = w∗, which contradicts our initial
assumption.

Now let us prove the second point (ii), namely that for
no other value of w, the symmetry function Ym

sh (Wm,w) is a
linear function of Wm. To prove this, we first note that for
any w ∈ R arbitrarily fixed, �(x; w) is bounded. This is so
because it is a continuous function of x and, furthermore,
limx→−∞ �(x,w) = limx→+∞ �(x,w) = 0 for any w ∈ R.
Summarizing, we have the following three properties:

(1) There is only one value of w, say, w∗ = βσ 2
u /2(1 + α),

such that �(x,w∗) ≡ 0 for all x ∈ R,
(2) limx→±∞ �(x,w) = 0 for any w ∈ R, and
(3) For any w ∈ R,�(x; w) is bounded in R.
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In order to make the point, we need to prove that there is
no real w such that �(x; w) = Ax + B, with A,B ∈ R not
simultaneously zero. It is important to note that A and B must
not be both zero, because we would then have �(x; w) ≡ 0,
which is only possible for w = w∗, by virtue of Property
1. Let us assume that, indeed, there exists w2 ∈ R, such
that �(x; w2) = Ax + B with A and B not simultaneously
zero. Now, given that Property 3 holds for any w ∈ R, it
holds in particular for w = w2, which implies that A ≡ 0,
otherwise �(x,w2) would not be bounded. We are thus left with
�(x,w2) = B for all x, with B �= 0. This means, in particular,
that we have limx→±∞ �(x,w2) = B. But Property 2 is valid
for any value of w, in particular for w = w2, and thus we
have B = 0, which contradicts our initial assumption. This
proves that, apart from w∗ = βσ 2

u /2(1 + α), no other value of
the shift w can make the symmetry function a linear function
of Wm.

APPENDIX D: DERIVATION OF THE EXPRESSIONS FOR
MEAN AND THE VARIANCE OF W m IN SEC. IV F

1. Characterization of the initial conditions

We first note that from the second line of Eq. (88), we have

xm(t) = xm(0)e−t/τr + 1

τr

∫ t

0
dt1[x(t1) + η(t1)]e−(t−t1)/τr .

(D1)

Since 〈x(0)〉 = 0, we obtain that the initial condition of the
measured position satisfies 〈xm(0)〉 = 0.

To get the variance of the measured position at the initial
time, we take the Fourier transform of Eq. (88) to get

x(ω) = ξ (ω)

κ − iωγ
;

(D2)

xm(ω) = x(ω) + η(ω)

1 − iωτr

,

where the x(t) is related to its Fourier transform x(ω) through

x(t) =
∫ ∞

−∞
x(ω)e−iωtdω. (D3)

A similar definition holds for xm(ω). Using the Wiener-
Khinchin theorem, we have 〈|ξ (ω)|2〉 = 2γ T and 〈|η(ω)|2〉 =
σ 2

η . One can then write,

〈(xm(0))2〉 =
∫

dω

2π
〈|xm(ω)|2〉

=
∫

dω

2π

{
2γ T

[(ωγ )2 + κ2][1 + (ωτr )2]

+ σ 2
η

1 + (ωτr )2

}
. (D4)

We note that the integrand has poles at ω = ±iκ/γ and at
±i/τr . Choosing to integrate over the upper half of the complex
plane, and using the fact that 〈xm(0)〉 = 0, the variance of
xm(0) is

σ 2
xm (0) = 〈(xm(0))2〉 = γ T

κ(γ + κτr )
+ σ 2

η

2τr

. (D5)

By the same method, one also obtains the correlation function
between the true and measured positions at the initial time,
〈xm(0)x(0)〉 using again Fourier transforms. We find

〈xm(0)x(0)〉 = γ T

κ(κτr + γ )
. (D6)

With these expressions, we can proceed to calculate the mean
and the variance of the measured work.

2. Computation of 〈W m〉
From Eq. (D1), we have

〈xm(t)〉 = 1

τr

∫ t

0
dt1〈x(t1)〉et1/τr . (D7)

On the other hand, from (88) we also have

x(t1) = x(0)e−κt1/γ + 1

γ

∫ t1

0
dt2[κλ(t2) + ξ (t2)]e−κ(t1−t2)/γ .

(D8)

Combining the above two equations, it follows that

〈xm(t)〉 = κ

γ τr

∫ t

0
dt1e

−(t−t1)/τr

∫ t1

0
dt2e

−κ(t1−t2)/γ λ(t2).

(D9)

Now,

〈Wm〉 = κ

∫ τ

0
dtλ̇(t)(λ(t) − 〈xm(t)〉). (D10)

We have chosen λ(t) = at/τ . Thus, using (D9), the following
formal expression for 〈Wm〉 is obtained:

〈Wm〉 = a2κ

2
− a2

τ 2

κ2

γ τr

∫ τ

0
dt

∫ t

0
dt1e

−(t−t1)/τr

×
∫ t1

0
dt2t2e

−κ(t1−t2)/γ . (D11)

This leads to the following expression for the mean measured
work:

a2
[
γ 3(e− κτ

γ − 1) + γ 2κτ + κ3τ 2
r (−τre

− τ
τr − τ + τr )

]
τ 2κ(γ − κτr )

.

(D12)

3. Computation of σ 2
W m

One can readily obtain the formal expression for σ 2
Wm in

terms of measured position as:

σ 2
Wm = κ2

∫ τ

0
dtλ̇(t)

∫ τ

0
dt ′λ̇(t ′)〈�xm(t)�xm(t ′)〉, (D13)
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where �xm(t) ≡ xm(t) − 〈xm(t)〉. Thus, we first need to calculate the quantity 〈�xm(t)�xm(t ′)〉. We first note that

�xm(t) = xm(0)e−t/τr + x(0)
tc

τr

(e−t/τr − e−κt/γ ) + 1

γ τr

e−t/τr

∫ t

0
dt ′e−t ′/tc

∫ t ′

0
dt1ξ (t1)eκt1/γ + 1

τr

∫ t

0
dt ′η(t ′)e−(t−t ′)/τr ,

(D14)

where 1/tc = κ/γ − 1/τr . Thus, we have

〈�xm(t)�xm(t ′)〉 = 〈(xm(0))2〉e−(t+t ′)/τr + 〈x2(0)〉
(

tc

τr

)2

(e−t/τr − e−κt/γ )(e−t ′/τr − e−κt ′/γ )

+ 〈xm(0)x(0)〉 tc

τr

[2e−(t+t ′)/τr − e−t/τr−κt ′/γ − e−t ′/τr−κt/γ ]

+ 1

γ 2τ 2
r

e−(t+t ′)/τr

∫ t

0
dt2e

−t2/tc

∫ t2

0
dt1e

κt1/γ

∫ t ′

0
dt3e

−t3/tc

∫ t3

0
dt4e

κt4/γ 〈ξ (t1)ξ (t4)〉

+ 1

τ 2
r

∫ t

0
dt1e

−(t−t1)/τr

∫ t ′

0
dt2e

−(t ′−t2)/τr 〈η(t1)η(t2)〉. (D15)

The fifth term (fourth line) can be readily calculated to be

σ 2
η

2τr

[e−|t−t ′ |/τr − e−(t+t ′)/τr ]. (D16)

The fourth term (third line) can also be explicitly calculated. Finally, plugging these expressions into Eq. (D13), we obtain the
variance of the measured work. The explicit expressions are lengthy and not very illuminating and for that reason are not given
here.
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[31] G. Verley, R. Chétrite, and D. Lacoste, J. Stat. Mech. (2011)

P10025.
[32] M. Jahnel, M. Behrndt, A. Jannasch, E. Schäffer, and S. W. Grill,
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