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Kinetic theory and thermodynamics of reaction networks are extended to the out-of-equilibrium
dynamics of continuous-flow stirred tank reactors (CSTR) and serial transfers. On the basis of their
stoichiometry matrix, the conservation laws and the cycles of the network are determined for both
dynamics. It is shown that the CSTR and serial transfer dynamics are equivalent in the limit where the
time interval between the transfers tends to zero proportionally to the ratio of the fractions of fresh to
transferred solutions. These results are illustrated with a finite cross-catalytic reaction network and
an infinite reaction network describing mass exchange between polymers. Serial transfer dynamics
is typically used in molecular evolution experiments in the context of research on the origins of life.
The present study is shedding a new light on the role played by serial transfer parameters in these
experiments. Published by AIP Publishing. https://doi.org/10.1063/1.5022697

I. INTRODUCTION

The regulation of self-assembly plays a critical role
in biological systems, both for the emergence of life out
of non-living matter and for its maintenance. Remarkable
advances in the manipulation, replication, and sorting of
information-rich biopolymers, such as nucleic acids1 or pep-
tides,2 allow us to perform novel proofs of principle regarding
the mechanisms prevailing to the emergence of life. In this
field, chemical reaction networks of interdependent molecu-
lar species have long been considered as a central element for
theoretical studies and simulations.3–9 Thanks to the afore-
mentioned experimental advances,1,2 these systems are now
accessible to experiments.10,11 Besides the relevance for the
origins of life, such molecular evolution experiments sug-
gest new chemical pathways to achieve the self-assembly
of molecular elements into complex molecules and beyond
into supramolecular structures.12,13 Directed evolution exper-
iments are a special kind of molecular evolution experiment,
in which variations due to mutations are introduced artificially
while a well-controlled selection pressure is applied.14 This
allows one to select enzymes with an improved efficiency,
which is particularly attractive for industrial applications in
biotechnology.15

A common feature in these molecular evolution exper-
iments is that they are open reaction networks, which are
maintained out of equilibrium through incoming and outgoing
fluxes of molecules or energy. Many examples of such struc-
tures exist in biology. Cytoskeletal filaments such as actin or
microtubules display a rich dynamics which can only exist
through a constant flux of energy rich Adenosine triphosphate
(ATP) and Guanosine triphosphate (GTP) molecules.16–18 The
same is true for larger cellular structures such as membrane

protein clusters or P-granules,19,20 which owe their special
liquid-like properties to the turnover of their constituents.
These systems fall into the broad class of active systems,
which are presently the focus of intense research both in
physics and biology.21 Active systems typically form dissi-
pative structures which would not exist in the absence of
non-equilibrium fluxes from the environment and which mani-
fest very different properties than at equilibrium.22 Therefore,
an approach based on non-equilibrium statistical mechanics
and thermodynamics is required to describe them. Building
on the well established framework of nonequilibrium ther-
modynamics23,24 and on more recent progress in stochastic
thermodynamics, a generic and comprehensive theory of open
chemical networks has been recently developed.25,26 In previ-
ous work, this theoretical framework has been used to analyze
a mass-exchange model of polymers with identical monomers
in a closed system27 and an open version of the same model, in
which chemostats fix the concentrations of polymers of certain
length and as a result drive the system out of equilibrium.28

When different monomer types are present, an even richer
dynamics of recombination between polymer chains is possi-
ble due to the interplay between polymer lengths and polymer
sequences.29

There exist several approaches to drive a reaction network
out of equilibrium. One of them is the continuous-flow stirred
tank reactor (CSTR), in which a well-stirred solution is con-
tinuously fed by reactants while keeping its volume constant
with a compensating outflow.30–34

In the experiment of Ref. 1, a mixture of interdependent
biopolymers evolves through serial transfers, in which a part of
the solution of interest is periodically transferred to a nutrient
medium, from which the solution of interest draws reactant
molecules and energy. Chemical systems evolving by serial
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transfers have similarities with systems evolving in CSTRs,
but it is not clear whether the two dynamics are completely
equivalent from a kinetic or thermodynamic point of view.
CSTRs can exhibit a large range of dynamic phenomena, such
as stationary, oscillatory, multi-stable, or chaotic,30,32,35 and it
is natural to ask whether all these regimes are possible in a
reactor evolving instead by serial transfers. Let us also men-
tion that a setup somehow similar to CSTRs also exists under
the name of chemostats in studies of the metabolism of cells:
in such bioreactors, a population of cells is maintained in an
exponentially growing phase by the injection of nutrients into
the system.36

In this paper, we compare the kinetic and thermodynamic
descriptions of open reactors (CSTRs) with that obtained in the
case of serial transfers between closed reactors. We illustrate
our results with a study of the polymer mass-exchange model
of Ref. 28, except that now the system is not driven out of
equilibrium by chemostats as considered in Refs. 25 and 26
but by matter fluxes in a CSTR configuration. This paper is
organized as follows: in Sec. II, we study the kinetics and
thermodynamics of CSTRs, which is then illustrated with a
couple of examples of chemical reactions; then, in Sec. III, we
carry out the corresponding study for the case of serial transfer
dynamics between closed reactors. The conclusion is drawn in
Sec. IV.

II. CONTINUOUS-FLOW STIRRED TANK REACTOR
A. Kinetic equations of the CSTR

Continuous-flow stirred tank reactors are open reactors
with a continuous feed of reactants and an outflow in order to
keep the volume constant inside the reactor (see Fig. 1). The
reactants are pumped into the reactor at given controlled con-
centrations ck ,in. The solution in the reactor is well stirred so
that the concentrations of the different species can be supposed
to remain uniform inside the volume of the reactor. In order to
establish the evolution equations of the concentrations in the
CSTR, we use the balance equations of the concentrations ck

FIG. 1. Schematic representation of a continuous-flow stirred tank reactor
(CSTR). The dashed line depicts a fictitious surface delimiting the volume V
of the reactor.

in the flow,

∂tck +∇∇∇ ·
(
ckv + jk

)
=

∑
i

νkiwi , (1)

expressed in terms of the fluid velocity v, the diffusive current
density of species k given by Fick’s law jk = �Dk∇∇∇ck , the sto-
ichiometric coefficient νki of species k in the reaction i, and
the rate wi of reaction i. The different species are passively
advected by the turbulent velocity field v of the flow. By stir-
ring, the concentrations rapidly become uniform so that the
Fickian diffusive current densities are soon negligible jk ' 0.
Integrating the balance equation (1) over the volume V of the
reactor, we find∫

V
∂t ck dV +

∫
∂V

ckv · dA =
∫

V

∑
i

νkiwi dV , (2)

where dA is the surface element of integration on the border ∂V
of the volume V. The surface integral has contributions from
the inflow tube of species k entering with concentration ck ,in

and the outflow tube where the species k exits at the uniform
concentration ck resulting from stirring,∫

∂V
ckv · dA =

∫
∂Vk,in

ckv · dA +
∫
∂Vout

ckv · dA . (3)

Since the concentrations can be supposed to be uniform at
entry and exit, we get∫

∂V
ckv · dA = −φk,in ck,in + φout ck (4)

in terms of the ingoing flux φk,in = ∫∂Vk,in
v · dA of the solution

in the tube bringing species k into the reactor and the exit
flux φout = ∫∂Vout

v · dA of the stirred solution. These fluxes
are in units of m3/s and depend on the section areas of the
injection and exit tubes. Since the volume of solution which
enters the reactor is equal to the volume that leaves it, we have
φout =

∑
k φk,in. Since the concentrations are uniform inside

the reactor, Eq. (2) divided by the volume V becomes

dck

dt
=

∑
i

νki wi +
1
τ

(ck0 − ck) , (5)

where τ ≡ V /φout is the mean residence time of the species
inside the reactor and

ck0 ≡
φk,in

φout
ck,in (6)

are the injected concentrations of reactants reported for the
whole volume. Both the residence time τ and the injected
concentrations ck0 are control parameters.

The evolution equations for the concentrations form a set
of ordinary differential equations, which are typically nonlin-
ear. In the limit where the residence time becomes very long,
the last term of Eq. (5) becomes negligible, and we recover the
kinetic equations in a closed reactor, the so-called batch reac-
tor,34 in which case the concentrations will sooner or later
reach their equilibrium value. In the other limit where the
residence time is very short, the last term dominates so that
the concentrations remain nearly equal to their value at injec-
tion: ck ' ck0. In between, the concentrations may manifest
a rich variety of different stationary, oscillatory, or chaotic
behaviors in some autocatalytic or cross-catalytic reaction
networks.31–35
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B. Thermodynamics

A typical CSTR is functioning under atmospheric pressure
and at room temperature if the reactions are not too exothermic.
Under these conditions, the relevant thermodynamic potential
is Gibbs’ free energy G. We assume local thermodynamic equi-
librium for every element of the solution and consider the free
energy density,

gV =
∑

k

µk ck , (7)

where µk is the chemical potential of species k.
Using Eq. (7) together with Gibbs’ fundamental relation

per unit volume

dgV = −sV dT + dP +
∑

k

µkdck , (8)

where sV is the entropy density, T the temperature, and P the
pressure, one obtains the Gibbs-Duhem relation

sV dT − dP +
∑

k

ckdµk = 0 . (9)

Using Eq. (9) under isothermal and isobaric conditions, one
finds that ∑

k

ckdµk = 0. (10)

Since the solution is well stirred, it is quasi homogeneous
in the bulk of the tank, and the time evolution of the Gibbs
free energy follows that of the concentrations of the various
species. Using Eqs. (7)–(10), one obtains

dgV

dt
=

∑
k

µk
dck

dt
. (11)

Now, using Eq. (5) for the concentrations, the time
evolution of the free energy density then becomes

dgV

dt
=

∑
ki

µkνkiwi +
1
τ

∑
k

µk (ck0 − ck). (12)

According to the mass action law,33 the reaction rates are
proportional to the concentrations of all the species entering in
the reaction. It is convenient to make the distinction between
the forward and reversed reactions so that

w±i = k±i

∏
k

( ck

c0

)ν(±)
ki

, (13)

where k±i are the rate constants, ν(±)
ki the numbers of molecules

entering the forward or the reversed reaction, and c0 the stan-
dard concentration of 1 mol/l. The stoichiometric coefficient
is thus given by νki = ν(−)

ki − ν
(+)
ki , while wi = w+i � w−i. In a

dilute solution, the chemical potentials of the solute species
are given by µk = µ

0
k + RT ln(ck/c0), where R is the molar gas

constant. Now, the ratio of the rate constants is related to the
standard free energy of the reaction according to

k+i

k−i
= exp

(
−

∑
k

µ0
kνki

RT

)
. (14)

The entropy production rate of the reactions is given by

σ = −
1
T

∑
ki

µkνkiwi

= R
∑

i

(w+i − w−i) ln
w+i

w−i
≥ 0, (15)

which is always non-negative.
Now, combining Eq. (15) with Eq. (12), the time evolution

of the free energy density becomes

dgV

dt
= −Tσ +

1
τ

(γ0 − gV ), (16)

where we have introduced the following quantity:

γ0 =
∑

k

µk ck0. (17)

In a closed reactor where τ is infinite, the free energy will
decrease toward its minimal value. However, in an open reac-
tor where τ is finite, the free energy does not need to reach
its minimal value. In this regard, nonequilibrium stationary,
oscillatory, or chaotic regimes can be sustained in an open
reactor.23,33

The term (γ0 − gV ) /τ in Eq. (16) has no definite sign,
except in a stationary state where it is equal to the dissipation
produced by the chemical reactions and therefore must be pos-
itive. In this case, it is sufficient to know the Gibbs free energies
of incoming and outgoing chemical species in order to know
the dissipation associated with chemical reactions within the
reactor.

C. General properties of reaction networks in a CSTR

Reaction network theory allows us to obtain key properties
such as the conservation laws and the cycles, which deter-
mine the behavior of the stationary states. These properties are
known for chemostatted systems,25,26 and an important issue
is to understand how they differ in a CSTR. We note that the
cycles defined in reaction network theory should not be con-
fused with the limit cycles of nonlinear dynamics. The former
are defined as the right null eigenvectors of the stoichiometric
matrix,26 while the latter are periodic solutions for the ordinary
differential equations of the reaction network corresponding to
periodic oscillations.22,33

Equation (5) ruling the time evolution of the concentra-
tions can be rewritten in matrix form as follows:

dc
dt
= ννν · w +

1
τ

(c0 − c) (18)

in terms of the s-dimensional vectors c and c0 of concentrations
and injected concentrations, the r × s matrix ν of stoichiometric
coefficients, and the r-dimensional vector of reaction rates w,
where s is the number of species and r the number of reactions
in the network.

In the limit τ→∞, we recover the case of a closed reac-
tor.25,26 In a stationary state, we have ν·w = 0, implying that w
can be decomposed in the basis of right null eigenvectors eγ,
which are called cycles: w =

∑
γ
wγeγ.

The rank of the stoichiometry matrix of the closed reactor
can be written as

rank(ννν) = r − o = s − l , (19)
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where o = dim ker(ν) is the number of cycles and l = dim
coker(ν) is the number of conserved quantities. The quantities
that are conserved in a closed reactor are defined as

L ≡ `̀̀ · c , (20)

with a vector ` such that

`̀̀ · ννν = 0 . (21)

In an open reactor where τ is finite, such quantities are
no longer conserved. Instead, they converge asymptotically
toward their value defined for the injected concentrations,

L0 = `̀̀ · c0 . (22)

Indeed, applying the vector ` to Eq. (18), we find that

dL
dt
=

1
τ

(L0 − L) , (23)

the solution of which is given by

L(t) = L(0) e−t/τ + L0

(
1 − e−t/τ

)
. (24)

It is important to emphasize that all conservation laws are
broken in a CSTR.

We can also recover this result using the full stoichiometry
matrix of the CSTR. In an open reactor, the reaction network
also includes the s reactions of rates (c0 − c) /τ so that the total
number of reactions becomes r ′ = r + s, while the matrix of
stoichiometric coefficients should be extended toward a r ′ × s
matrix with r ′ = r + s. This means that the new stoichiometry
matrix of the CSTR reads

ννν′ = (ννν, III) , (25)

where I is the identity matrix s× s. Therefore Eq. (18) becomes

dc
dt
= ννν′ · w′, (26)

with the flow rate w′ = (w, w̃)T, a column matrix of dimension
1 × r ′ with w̃ = (c0 − c)/τ.

In an open reactor, we also get

rank(ννν′) = r ′ − dim ker(ννν′) = s − dim coker(ννν′) . (27)

The number of conserved quantities is now equal to zero,
l′ = dim coker(ν ′) = 0, so that the number of cycles is equal
to the number of reactions in the original network: o′ = dim
ker(ν ′) = r. Therefore, there are o′ � o = r � o = s � l cycles
of the open network that were not already present in the cor-
responding closed network. For chemostatted systems, such
cycles have been called emergent cycles.25,26

Here, we choose to call these cycles external cycles
because they involve the flow rates w̃ which are specific to the
CSTR. The other cycles are called internal. A general cycle e′

can be split into network components and flow components as
e′ = (e, ẽ)T. This cycle obeys ννν′ · e′ = ννν · e + ẽ = 0. Here we
can make the distinction between internal cycles eγ previously
defined for the network of the closed reactor which are such
that ν·eγ = 0 and ẽγ = 0 and external cycles eα which are such
that ẽα = −ννν · eα , 0.

As far as the thermodynamic description of the system is
concerned, Eq. (16) becomes

dgV

dt
=

∑
ki

µkν
′
kiw
′
i , (28)

within the framework of the extended network. In a stationary
state, the entropy production rate of Eq. (15) may be rewritten
as

σ = −
1
T
µµµ · ννν · w = −

1
T

∑
λ

wλ µµµ · ννν · eλ

= −
1
T

∑
α

wα µµµ · ννν · eα

=
1
T

∑
α

wα µµµ · ẽα ≥ 0. (29)

This shows that in this case the entropy production rate can be
written as a sum of contribution from external cycles denoted
with the index α only. A similar property was reported in the
case of chemostatted systems.25,26

D. Illustrative examples

Here, we present two illustrative examples of the above
framework. The first example is a network of small size taken
from Ref. 25, and the second one is a larger network describing
polymers with a mass-exchange process taken from Ref. 28.

1. Example with a finite network

The set of reactions in the first example are

A + B
1
−−−⇀↽−−− C, w1 = k+1[A][B] − k−1[C], (30)

C
2
−−−⇀↽−−− B + D, w2 = k+2[C] − k−2[B][D], (31)

B + D
3
−−−⇀↽−−− E, w3 = k+3[B][D] − k−3[E], (32)

E
4
−−−⇀↽−−− A + B, w4 = k+4[E] − k−4[A][B]. (33)

The stoichiometry matrix of this network is then

ννν =

*......
,

−1 0 0 1
−1 1 −1 1

1 −1 0 0
0 1 −1 0
0 0 1 −1

+//////
-

, (34)

and the corresponding hypergraph is shown in Fig. 2.26

As shown in Ref. 25, this network has l = 2 conserved
quantities L1 = [B] + [C] + [E] and L2 = [A] + [C] + [D] + [E].
There is only one cycle (o = 1) with a null right eigenvector
(1,1,1,1)T.

FIG. 2. Hypergraph of the closed chemical network (30)–(33).
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For the open reactor network, the stoichiometry matrix ν ′

is obtained from Eq. (25), its rank is 5, it has o′ = 4 cycles,
l′ = 0 conserved quantities, and s � l = 3 new cycles. The cycles
are the old cycle e1 = (1,1,1,1,0,0,0,0,0)T and the three new
cycles e2 = (1,1,0,0,1,0,0,�1,0)T, e3 = (0,1,1,0,0,0,1,0,�1)T,
and e4 = (0,0,1,1,�1,0,0,1,0)T. The new cycles are represented
in Fig. 3. This representation makes it clear that hypergraphs
depicting the new cycles of the open network are built from the
hypergraph of the closed network by removing some reactions
and chemical species. Then the remaining pieces are connected
together using a special symbol φ, which is introduced for this
purpose and which describes new reaction pathways involving
the exterior of the CSTR.

We note that the hypergraphs in Figs. 2 and 3 depend on
the reaction network but not on the concentration values of the
involved species.

2. Example with an infinite network

We now move to a more complex reaction network,
namely, the model of polymers undergoing a mass-exchange
process taken from Ref. 28. In this model, two polymers of
mass n and m interact with the reaction

(n)+ (m)
κ
−−−⇀↽−−− (n+1)+(m−1), for n ≥ 1, m ≥ 2. (35)

In an open reactor, the kinetic equations can be written in
the form

dck

dt
=

1
2

∑
n≥1,m≥2

νk,nm wnm +
1
τ

(ck,0 − ck) for k ≥ 1,

(36)
with the stoichiometric coefficients νk ,nm = δk ,n+1 + δk ,m�1

� δk ,n � δk ,m and the rates wnm = κcncm � κcn+1cm�1 obeying
the mass action law.

In the closed reactor (τ = ∞), this network has two con-
served quantities: the total concentration c ≡

∑∞
k=1 ck and the

total number of monomeric units M =
∑∞

k=1 k ck . In the open
reactor, these quantities are no longer conserved because they
obey the equations

dc
dt
=

1
τ

(c0 − c), (37)

dM
dt
=

1
τ

(M0 −M) (38)

so that they converge asymptotically in time toward their value
c0 or M0 fixed by the inlet concentrations.

Although the reaction network is infinite, it can be trun-
cated by considering a finite number s of species. In this case,
the reactions and the cycles can be enumerated using the list

of all the reactions,

1 + 2 −−−⇀↽−−− 2 + 1, 2 + 3 −−−⇀↽−−− 3 + 2, 3 + 4 −−−⇀↽−−− 4 + 3, . . .

1 + 3 −−−⇀↽−−− 2 + 2, 2 + 4 −−−⇀↽−−− 3 + 3, . . .

1 + 4 −−−⇀↽−−− 2 + 3, . . .

... (39)

In the closed reactor, the number of reactions involving s
species is thus equal to

r =
1
2

s(s − 1) . (40)

Since there are l = 2 conserved quantities in the closed reactor,
Eq. (19) thus shows that the number of cycles is equal to

o = r − s + 2 =
1
2

(s − 1)(s − 2) + 1. (41)

Accordingly, these numbers are increasing quadratically with
the number s of the species.

In the open reactor, the reactions include the rates
w̃k = (ck0−ck)/τ due to the flow so that the number of reactions
involving s species is now given by

r ′ = r + s =
1
2

s(s + 1) . (42)

There are no conserved quantities l′ = 0 and the number of
cycles here is equal to

o′ = o + s − 2 = r =
1
2

s(s − 1) . (43)

Therefore, opening the reactor only adds a number of new
cycles s � 2 that is increasing linearly with the number of
species, while the total number of cycles of the open system
is increasing quadratically with the number of species.

In the CSTR, all the concentrations remain bounded in
time. This rules out the possibility to observe an “unbal-
anced phase,” such as the unbounded growth phase reported
in Ref. 28 in a variant of this mass-exchange model, which
was driven out-of-equilibrium by chemostats fixing the con-
centrations of polymers of certain lengths. In that model, the
total concentration c increased linearly in time and the total
number of monomers M increased quadratically. By contrast,
in a CSTR, both quantities remain bounded in time, a property
which follows generally from Eq. (23).

In Fig. 4, we show the stationary distribution of con-
centrations in a CSTR for different values of the residence
time τ by injecting monomers at the concentration c1,0 and
oligomers of length l = 10 at the concentration c10,0. The
kinetic equations are integrated with a Runge-Kutta algorithm
of orders 4 and 5 with variable steps from the initial distri-
bution ck(0) = exp(�k2/2). The distribution is plotted after a

FIG. 3. Hypergraphs of the three new
cycles in the open version of the chemi-
cal network represented in Fig. 2. Here
(a)–(c) correspond to the cycles e2, e3,
and e4, respectively. Note the appear-
ance of the symbolφwhich is a notation
for new reactions involving the inflow
and outflow of the CSTR.
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FIG. 4. Stationary distributions of the oligomer concentrations {ck} for the
mass-exchange process with the rate constant κ = 1 in a CSTR with the
injection of monomers and 10-mers at the inlet concentrations c1,0 = 1 and
c10,0 = 2 for different values of the residence time τ. If τ = ∞, the reactor is
closed and the stationary distribution is the equilibrium one (open squares).
If τ is finite, the reactor is open and out of equilibrium (filled symbols).

time interval t = 1000 if τ = ∞, 0.1, 1, 10, after t = 10 000
if τ = 100, and after t = 50 000 if τ = 1000, when station-
arity is numerically reached. If τ = ∞, the reactor is closed
so that the concentrations reach their equilibrium exponential
distribution

ck,eq =
c(0)2

M(0)

[
1 −

c(0)
M(0)

]k−1

, (44)

determined by the initial values of the two invariant quan-
tities c(0) = 0.7533 and M(0) = 0.9119 so that ck ,eq

= 3.58 × 0.174k . By contrast, under nonequilibrium con-
ditions, if τ is finite, the distribution deviates from being
purely exponential, and it even becomes bimodal with peaks
at k = 1 and k = 10 if the open reactor is strongly out
of equilibrium with a small enough residence time τ. Nev-
ertheless, the distribution is always exponential beyond the
largest injected concentration c10,0, as shown in the Appendix.
In the open reactor, the distribution no longer depends
on the initial conditions but on the values of the injected
concentrations.

III. SERIAL TRANSFERS BETWEEN CLOSED
REACTORS

Now, we consider the dynamics of the reaction network
in a typical serial transfer experiment.1

A. Time evolution of the concentrations

At every transfer, a fraction f of the solution volume V is
transferred to another closed reactor already containing a fresh
solution of volume (1� f )V with reactants at the concentrations
ck0, as illustrated in Fig. 5.

Let T be the time interval between two transfers. Dur-
ing this time interval, the reactor is closed so that the
concentrations evolves according to

dc
dt
= ννν · w . (45)

FIG. 5. Schematic representation of a serial transfer experiment in which a
volume fV of the solution of interest (green) is transferred repeatedly into
fresh solutions of volume (1 � f )V (blue).

Let c(nT − 0) be the concentrations just before the previous
transfer. The concentrations just after the transfer and stirring
are thus given by

c(nT + 0) = (1 − f ) c0 + f c(nT − 0). (46)

Thereafter, the concentrations evolve according to

c (t) = c(nT + 0) +
∫ t

nT
ννν · w

[
c(t ′)

]
dt ′, (47)

with nT + 0 < t < nT + T− 0. The concentrations just before
the next transfer are thus given by

c(nT + T − 0) = (1 − f ) c0 + f c(nT − 0)

+
∫ (n+1)T

nT
ννν · w [c(t)] dt, (48)

which defines a mapping cn+1 =Φ(cn) from cn ≡ c(nT− 0) to
cn+1 ≡ c(nT + T − 0). A similar mapping can be obtained for
the concentrations after the transfers.

Let us suppose that the transfers are quickly repeated at
every small time intervalT = ∆t. As a consequence of Eq. (48),
we get the approximate ordinary differential equations,

∆c
∆t
'

1 − f
∆t

(c0 − cn) + ννν · w
[
(1 − f ) c0 + f cn

]
, (49)

where ∆c = cn+1 � cn. Introducing the effective residence time

τ ≡
∆t

1 − f
, (50)

we recover in the limit ∆t → 0 the kinetic equations of the
concentrations in a CSTR,

dc
dt
= ννν · w(c) +

1
τ

(c0 − c). (51)

If f = 1−T/τ in the limit T→ 0, an experiment of serial trans-
fers between closed reactors is thus similar to an experiment
in a CSTR. Therefore, similar nonequilibrium regimes are
expected in both experiments under comparable conditions.

B. Thermodynamics

Let us follow Gibbs’ free energy during the time evo-
lution. Before the transfer at time nT, the free energy den-
sity of the solution in the volume V is gV [c (nT − 0)]. After
the transfer of the volume fV of solution into the volume
(1 � f )V of fresh solution and the mixing of both, the free
energy density becomes gV

[
f c (nT − 0) + (1 − f )c0

]
. There-

after, the free energy density changes in time since the concen-
trations evolve according to Eq. (45) in the closed reactor. At
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the end of the time interval nT < t < nT + T, the free energy
density has thus become

gV [c (nT + T − 0)] = gV
[
f c (nT − 0) + (1 − f )c0

]
+
∫ (n+1)T

nT
dt ġV [c(t)] , (52)

where ġV = µ·ν·w is the time derivative of the free energy in
the closed reactor given by Eq. (12) with τ = ∞. The process
repeats itself at every time interval.

In the limit where T = ∆t → 0 with f = 1 � ∆t/τ, using
the same notation cn ≡ c(nT − 0) as above, Eq. (52) becomes

gV (cn+1) = gV

[
cn +

∆t
τ

(c0 − cn)

]

+∆t µµµ(cn) · ννν · w(cn) + O(∆t2) . (53)

Since µ = ∂gV /∂c, the previous equation becomes

gV (cn+1) = gV (cn) +
∆t
τ
µµµ(cn) · (c0 − cn)

+∆t µµµ(cn) · ννν · w(cn) + O(∆t2) . (54)

In the limit ∆t → 0, we thus find the differential equation

dgV

dt
= µµµ(c) · ννν · w(c) +

1
τ
µµµ(c) · (c0 − c), (55)

which is the same as Eq. (12) for the time evolution of the free
energy in the CSTR.

In the limit ∆t → 0, there is thus equivalence between
the dynamics in the CSTR and the time evolution in a serial
transfer experiment.

C. General properties of the reaction network
in serial transfers

The considerations of Subsection II C extend to reaction
networks in serial transfers between closed reactors. Here, a
stationary state corresponds to a fixed point cn = c∗ =Φ(c∗) of
the mapping defined by Eq. (48).

As in the case of the CSTR, conserved quantities of the
closed network, namely, quantities of the form L = `·c are no
longer conserved in the open reactor. Instead, their dynamics
follow a simple relaxation equation

L (nT + T − 0) = (1 − f )L0 + fL (nT − 0) , (56)

which is the counterpart of Eq. (23). At the fixed point
where the conserved quantity is such that L (nT + T + 0)
= L (nT + 0) = L∗, this quantity equals the quantity L0, which
is the conserved quantity of the closed network evaluated at the
injected concentration and which was introduced in Eq. (22).

Furthermore, the fixed point c∗ should satisfy the same
condition

ννν′ · w′ = 0, (57)

as in Subsection II C in terms of the same stoichiometry matrix
(25), which was introduced to characterize the CSTR. Note,
however, that now w

′

is replaced by w′ = (〈w〉, w̃)T with
the time average of the reaction rates over the time interval
between the transfers

〈w〉 =
1
T

∫ (n+1)T

nT
w [c(t)] dt, (58)

which has the same value between every transfer because the
process repeats itself from the point fixed cn = c∗, and

w̃ =
1 − f
T

(c0 − c∗) . (59)

Therefore, Eq. (27) applies here as well, and the number of
conserved quantities is equal to zero. The rates can be decom-
posed as w′ =

∑
λ w
′
λe′λ onto the o′ = dim ker(ν ′) right null

eigenvectors of the matrix ν ′, which define the cycles, as in
Subsection II C.

D. Illustrative example

Here, we illustrate the correspondence between the serial
transfers and CSTR dynamics using the mass-exchange model
introduced above. The conditions of operation of the reactors
are the same as in Fig. 4, namely, monomers are injected at the
concentration c1,0 = 1 and oligomers of length l = 10 at the con-
centration c10,0 = 2. The main difference is that now the reactor
is evolving by serial transfers instead of the CSTR dynamics.
The kinetic equations have been integrated using the integra-
tor odeint, which is available in SciPython. The precision of
this integrator is fixed to 10�5, which is the same as that used
in Fig. 4. The length distributions of the oligomers have been
observed at the time 1000T− 0, at which we find that the dis-
tributions have reached stationarity. In Fig. 6, simulations of
serial transfers have been carried out keeping the time T fixed
while varying f. As expected in this case, the length distribu-
tion approaches the equilibrium exponential distribution in the
limit f → 1, since the residence time introduced in Eq. (50)
becomes infinite.

In order to test more precisely the convergence toward
the CSTR dynamics, we have varied in Fig. 7 the parameters

FIG. 6. Concentrations ck of oligomers versus their length k probed at the
time 1000T − 0 after a thousand serial transfers with fixed parameters (a)
T = 1 and (b) T = 0.1 and for various values of f. Symbols correspond to f =
0.01 (downward red triangles), f = 0.1 (yellow diamonds), f = 0.5 (magenta
squares), f = 0.9 (green stars), and black crosses represent the equilibrium
distribution.
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FIG. 7. Concentrations ck of oligomers versus their length k probed at the
time 1000T − 0 after a thousand serial transfers corresponding to varying
(T, f ) parameters at fixed residence time (a) τeff = 1 or (b) τeff = 0.1. Symbols
correspond to f = 0.01 (downward red triangles), f = 0.1 (yellow diamonds),
f = 0.5 (magenta squares), f = 0.9 (green stars), but now black crosses represent
the length distribution predicted by the CSTR dynamics.

(f , T) while keeping the residence time τeff = τ constant either
at the value 1 or 0.1. The length distributions of the oligomers
have been observed at the time 1000T− 0. These plots indeed
confirm that, in this system, a convergence toward the CSTR
is obtained when f → 1, which is equivalent to T → 0 since
the residence time τ is kept constant.

In general, the state of the reactor following serial transfers
with arbitrary parameters (f , T) can differ substantially from
the predictions of the CSTR. However, if the parameters (f , T)
are chosen according to Eq. (50) and the time of observation
is not too long, as shown in Fig. 7, the behavior resulting from
serial transfers can be quite close to that observed by the CSTR
dynamics even when the parameter f is varied in a large range
from 0.001 to 0.99.

IV. CONCLUSION

In this paper, we have made a comparative study of the
kinetics and thermodynamics of open reactors (CSTR) with
that of serial transfers between closed reactors. For a given
choice of a chemical network and injected species, both the
CSTR and the serial transfer dynamics admit a steady state.
This implies that both systems will reach comparable com-
position on long times and also that the same cycles can be
used to characterize the steady state of both systems. How-
ever, their dynamics can differ substantially. Only in the limit
where the time interval between serial transfers tends to zero
for a fixed residence time, the two dynamics are strictly
equivalent.

We have also compared the properties of reaction net-
works in chemostatted systems25,26 with those in a CSTR. In

contrast to chemostatted systems, the concentrations remain
bounded in a CSTR. In a CSTR, there is no remaining con-
served quantity, and new cycles involving the exterior of the
CSTR appear in addition to the cycles of the closed reactor
network. Similar results hold for the serial transfer dynamics.

This study was motivated by molecular evolution exper-
iments which use serial transfers in the context of research
on the origins of life.1 Besides chemical evolution by serial
transfers, experiments in this field also use a dry-wet (or
day-night) cycling protocol as a means of inducing an evo-
lution in the composition of the system.2,9,37 Many other
cycling protocols are possible. In particular, cycles driven by
thermal convection38 and cycles of activation-deactivation or
of compartmentalization-decompartmentalization of specific
species11 are being considered. We believe that the framework
presented here could be extended to cover these cases, pro-
vided the molecular interactions between the various species
can be modeled.

Cycling protocols are often explored in the literature in
order to explain how a population of sufficiently long chains
can be self-sustained and show emergent properties, an impor-
tant issue for the research on the origins of life. Our example
of polymerization with mass exchange indicates that a popu-
lation of polymers with a non-exponential distribution can be
maintained in an open reactor if the residence time is not too
long, thus solving the first issue. The second issue regarding
the emergence of new properties is clearly more complex, but
the framework used here allows us at least to identify emer-
gent cycles of the chemical network, which should capture
important features of the emergent properties we are after.
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APPENDIX: ANALYSIS OF THE MASS-EXCHANGE
MODEL

In order to determine the stationary concentrations of the
mass-exchange model in the CSTR, we take the explicit form
of the kinetic equations (36) with injection of monomers and
oligomers of length l,28

dck

dt
= κc(ck+1 − 2ck + ck−1) + κc1(ck − ck−1) −

1
τ

ck , (A1)

for 1 < k < l and l < k,

dc1

dt
= κc(c2 − c1) + κc2

1 +
1
τ

(c1,0 − c1), (A2)

and

dcl

dt
= κc(cl+1 − 2cl + cl−1) + κc1(cl − cl−1) +

1
τ

(cl,0 − c1), (A3)
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where c =
∑∞

k=1 ck is the sum of all the concentrations. Under
the conditions of stationarity, this sum has reached its asymp-
totic value c = c1,0 + cl ,0, while the concentrations no longer
depend on time: dck /dt = 0. Under such conditions, Eqs. (A1)–
(A3) form a set of linear equations for the concentrations
{ck }

∞
k=1. The stationary solution is thus given by

ck,st =



AΛk
+ + BΛk

− , for 1 ≤ k ≤ l ,

C Λk
− , for l ≤ k

(A4)

in terms of the roots of the characteristic polynomial

Λ
2 +

(
c1

c
− 2 −

1
cκτ

)
Λ + 1 −

c1

c
= 0, (A5)

with Λ
�

< 1.
If τ =∞, we recover the equilibrium exponential distribu-

tion (44) satisfying the conditions of detailed balance. In this
case, the roots of Eq. (A5) are Λ+ = 1 and Λ

�

= 1 � c1/c. The
normalizable distribution is thus given by ck = CΛk

− for k ≥ 1
so that C = cc1/(c � c1). If τ =∞, the reactor is closed so that

the quantities c =
∞∑

k=1
ck and M =

∞∑
k=1

kck are invariant, and

they keep their initial values c(0) = c and M(0) = c2/c1, hence
the equilibrium distribution (44).

If τ is finite, the tail of the nonequilibrium distribution is
still exponential, but the decay factor Λ

�

< 1 takes a different
value than at equilibrium. If τ is large enough, the decay factor
is approximately given by

Λ− ' 1 −
c1(∞)
c(∞)

+ O(τ−1) , (A6)

and c1(∞) = c(∞)2/M(∞) + O(τ�1). In this limit, the stationary
distribution at large but finite values of the residence time is
given by

ck,st '
c(∞)2

M(∞)

[
1 −

c(∞)
M(∞)

]k−1

, if c(∞)κτ � 1 . (A7)

However, the sum of all the concentrations is no longer
a conserved quantity in the open reactor where it con-
verges toward its injection value: c(∞) = c0 = c1,0 + cl ,0.
In the example of Fig. 4, the injection values of the two
conserved quantities are, respectively, equal to c(∞) = c0

= 3 and M(∞) = M0 = 21, although their initial val-
ues are c(0) = 0.75331 and M(0) = 0.9119. This explains
the observation in Fig. 4 that the distribution is decreas-
ing more slowly as ck ,st ' 0.5 × (6/7)k ' 0.5 × 0.857k if
τ = 1000 in the open reactor than in the closed reactor if
τ =∞.

If τ is small enough, the distribution becomes bimodal
with two peaks at c1,st ' c1,0 and cl ,st ' cl ,0. In this limit, the
tail of the distribution behaves as ck ' cl,0Λ

k−l
− for k ≥ l with

Λ
�

' cl ,0κτ + O[(κτ)2] so that the decay can be faster than at
equilibrium, as seen in Fig. 4.
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