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We describe the kinetics and thermodynamics of copolymers undergoing recombination reactions,
which are important for prebiotic chemistry. We use two approaches: the first one, based on chemical
rate equations and the mass-action law describes the infinite size limit, while the second one, based
on the chemical master equation, describes systems of finite size. We compare the predictions of
both approaches for the relaxation of thermodynamic quantities towards equilibrium. We find that
for some choice of initial conditions, the entropy of the sequence distribution can be lowered at
the expense of increasing the entropy of the length distribution. We consider mainly energetically
neutral reactions, except for one simple case of non-neutral reactions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.5001021]

I. INTRODUCTION

Self-assembly plays a central role in biological systems,
both for the emergence of life out of non-living matter and
for its maintenance. Recent experiments strive to reproduce
the sophisticated strategies used by living systems to con-
trol self-assembly using complex, typically information-rich
elementary bricks.1 Many new experiments are now possi-
ble in this area, thanks to the continuous improvements in
experimental techniques of manipulation of nucleic acids and
enzymes in micro-fluidic devices. An example of such novel
experimental systems are DNA reaction networks allowing for
molecular programming and computing.2,3 Furthermore, with
high throughput sequencing techniques, it is now possible to
obtain statistical information about the mixtures of nucleic
acid sequences with an accuracy and speed out of reach for
other types of polymers. Purely artificial copolymers are also
being synthetized for applications in information storage.4,5

The sequence of such polymers can be read or written just like
with nucleic acids, albeit with a different chemistry. Clearly,
all these experimental techniques are bringing a revolution to
biotechnologies.

At the same time, these new experiments also require
novel theoretical approaches to account for the rich dynam-
ics displayed by these systems using methods from non-
equilibrium Statistical Physics, Thermodynamics, or Informa-
tion theory. Ideally, one goal would be to build a complete
description of the kinetics and thermodynamics of ensem-
bles of polymer sequences undergoing exchange reactions
with each other. In view of the complexity of this dynamical
system, simplified approaches are needed. Clearly, one impor-
tant step towards this goal is to understand the dynamics of
the length distribution alone disregarding the dynamics of the
sequence.

Pioneering theoretical works on reversible polymeriza-
tion6,7 were of this type. With the realization in the 1970s that

many biopolymers such as actin and microtubules undergo
reversible polymerization, new models were built to couple the
kinetics of polymerization with the internal energetics of the
biopolymer.8,9 In 2008, a comprehensive model for the ther-
modynamics of templated copolymerization was developed by
Andrieux and Gaspard.10 This model turned out to be instru-
mental to understand the general principles of information
processing at the molecular scale. While in its original version,
only the chemical nature of monomers being added was taken
into account, in subsequent work, correlations with the previ-
ously added monomers were also included.11 More recently,
the model has also been extended to describe the proof-
reading action of exonucleases12 and sequence heterogeneity
effects in the polymerization of DNA or RNA polymerases.13

In this context, another group also recently investigated
the fundamental thermodynamic costs of making polymer
copies.14

Here, we are not interested in such polymerization reac-
tions, but rather in simpler exchange reactions called recombi-
nation reactions. These recombination reactions are reversible
and are not necessarily assisted by enzymes such as poly-
merases. These features make them of interest for prebiotic
chemistry, as exchange reactions allow for a large repertoire
of sequences to be explored. Inspired by an experimental
and theoretical study on the synthesis and degradation of
carbohydrates,15 we have studied in previous work the kinet-
ics and thermodynamics of such reacting polymers.16 In that
work, we considered only one type of monomers, which could
either assemble and disassemble by reversible aggregation-
fragmentation dynamics or exchange terminal monomer units.
The chemical kinetics was described by rate equations follow-
ing the mass action law, and we assumed a closed system and
non-equilibrium initial conditions. Using Stochastic Thermo-
dynamics,17–20 we have analyzed the conditions under which
the mixture dynamically evolves towards an equilibrium state,
where detailed balance holds.
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In the present paper, we extend that approach by includ-
ing the sequence of the polymers in the description. We keep
otherwise the assumptions of a closed system, non-equilibrium
initial conditions, and reversible exchange reactions, all occur-
ring in a well-mixed reactor, in which spatial heterogeneity
is neglected. We will consider both energetically neutral and
energetically non-neutral reactions.

The outline of this paper is as follows: in Sec. II, we
present the two types of exchange reactions, on which we
will focus in this paper, which we called chain-exchange and
attack-exchange reactions. We then explain briefly the moti-
vations for studying such reactions in the context of prebiotic
chemistry. In Sec. III (and, respectively, Sec. IV), we develop a
theoretical framework to understand the relaxation of a mixture
of polymers undergoing exchange reactions using a determin-
istic (respectively, stochastic) approach. In Sec. V, we explore
the consequences of this approach for the specific case of
energetically neutral reactions; while in Sec. VI we study one
particular simple case of non-neutral reactions.

II. RECOMBINATION REACTIONS
A. Reaction mechanisms

Chain-exchange and attack-exchange are two examples
of recombination reactions, which involve the reversible trans-
fer of a group of subunits between two polymers. Since such
reactions conserve the number of chemical bonds between
monomers, they are often close to being energetically neu-
tral. The attack-exchange reaction involves the chemical attack
of one terminal unit of one chain on a site of the second
chain.

Similarly, the chain-exchange reaction involves two poly-
mer chains, which exchange part of their chains.

Exchange reactions can also be thought of as a composi-
tion of two reaction steps, such as a fragmentationωAωB −−−→←−−−
ωA + ωB followed by an addition ωC + ωB −−−→←−−− ωCωB. In
the following, it will be advantageous to introduce a spe-
cific notation to describe the evolution of sequences according
to these reactions (Fig. 1). Monomer sequences are consid-
ered to have a distinct polarity (or directionality), as in the
case of nucleic acids that have a distinct 5′ and 3′ end. A
sequence Ω of length l is composed of ω1ω2 . . . ωl. Two
subsequent sequences will be noted using a product nota-
tion ωω′ = ω1ω2 . . . ωlω

′
1ω
′
2 . . . ω

′
l′ , which is used for the

addition of two chains. An inverse sequence is defined as a
sequence that is removed, either from the front or from the
back, by placing the inverse either in front or on the back of a
sequence ωω′−1 = ω1ω2 . . . ωq. We define a length operator
as |.|, which counts the number of elements in a sequence. With

FIG. 1. Representation of attack-exchange reaction: ωAωB + ωC −−−→←−−−
ωCωB +ωA for the case that two monomer types are present: m = 2.

this notation, the attack-exchange may be written as

ωAωB + ωC −−−→←−−− ωCωB + ωA. (1)

Assuming mass action law, the reaction rates are

vωAωB
ωC = kωAωB,ωC NωAωB NωC ,
vωCωB
ωA

= kωCωB,ωA NωCωB NωA ,
(2)

where k is the corresponding rate constant, which can be
sequence dependent, and NΩ is the number of polymers of
sequence Ω.

Similarly, the chain-exchange reaction drawn in Fig. 2 can
be written as

ωAωB + ωCωD −−−→←−−− ωCωB + ωAωD, (3)

to which we attribute the rates

vωAωB
ωCωD = kωAωB,ωCωD NωAωB NωCωD ,
vωAωD
ωCωB = kωAωD,ωCωB NωAωD NωCωB .

(4)

When the forward and backward rate constants kωAωB,ωCωD

and kωAωD,ωCωB are equal, there is no change of standard
free energy, which implies a compensation between standard
enthalpy and entropy as detailed in Subsection III B.

An important constraint for both reactions of Eqs. (1) and
(3) is that we exclude the formation of any species of zero
length. This means that the total number of chains N =

∑
Ω NΩ

is a conserved quantity for both dynamics. In other words, there
is a minimum length of chains lmin = 2 for chain-exchange
reactions while lmin = 1 for attack-exchange reactions. In addi-
tion, in both exchange reactions, the first monomer is never
displaced, which leads to a conservation law for the composi-
tion of the first monomer. For chain-exchange, such a law also
exists for terminal monomers because they always remain in
a terminal position.

B. Prebiotic context

In studies on prebiotic chemistry, recombination reac-
tions are being more and more considered potential key
players before the emergence of truly self-replicating sys-
tems.21 Indeed, recombination reactions do not require com-
plex enzymes,22,23 nor do they require an energy source or
abundant monomer supplies. At the same time, their dynam-
ics is sufficiently rich that it can allow for a broadening of
the length distribution of the polymers and the apparition of a
primitive form of inheritability of their sequence,23 which was
until recently believed to be only possible in systems evolving
by template-assisted polymerization.24

All these features make recombination reactions promis-
ing candidates in prebiotic scenarios, as a means to explore the

FIG. 2. Representation of chain-exchange reaction: ωAωB + ωCωD −−−→←−−−
ωAωD +ωCωB.
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functional space of polymer sequences given prebiotic condi-
tions (no cellular machinery, low specificity/control, unreli-
able source of energy, or monomers). In RNA-world scenar-
ios, this exploration could eventually lead to the emergence
of catalytically active RNA species, so-called “ribozymes.”
As pointed out by Lehman, exchange reactions function
very much like sexual recombination in chromosomes, which
accounts for most of today’s natural variation. This is in con-
trast with template-directed polymerizations that resemble, in
this respect, asexual cloning.25

In the context of nucleic acid chemistry, several reactions
could qualify for recombination reactions: An attack-exchange
reaction occurs when the terminal hydroxyl group (possibly
modified) of one nucleic acid attacks a phosphodiester group
of another nucleic acid polymer and is typically aided by
sequence complementarity.22,23 This nucleophilic attack is a
simple transesterification, in which the number of phospho-
diester bonds is conserved. In modern biology, this reaction
is an important part of mRNA splicing pathways, in which a
pre-mRNA containing intron and exon sequences is finalized
by the removal of introns. Key steps for such a process are (I)
cleavage at a 5′ splicing site, followed by (II) transesterifica-
tion at a 3′ splicing site, in which an exon displaces an intron,
yielding a final RNA consisting of solely exon sequences.
These reactions are controlled by a number of ribozymes
and enzymes, and a single pre-mRNA often presents a whole
repertoire of alternative splicing pathways.26 Protein splic-
ing is a similar process, which often proceeds through a
similar transesterification step.27 A synthetic example of a
ribozyme performing exchange reactions is the Azoarcus
ribozyme.28

In synthetic chemistry, an attack-exchange is mediated by
any reaction with a “trans-” prefix (e.g., transesterification,
transamination, and transamidation). The type of reaction we
call chain-exchange is referred to as metathesis (e.g., olefin
metathesis, disulfide metathesis). The interest of sequence
exploration is not limited to RNA. For example, a recent exam-
ple shows how certain tripeptide sequences can lead to an
assembly of functional ferrodoxin clusters.29 In the last few
decades, the chain-exchange reaction has become essential
in synthetic chemistry, which culminated in the 2005 Nobel
Prize in Chemistry for metathesis methods. In particular, the
metathesis of olefins has become an invaluable tool for the
chemist.30

In 2012, a novel class of polymers called vitrimers
were discovered by Leibler’s group, which capitalize on
the dynamic properties provided by exchange reactions.31,32

By now, vitrimers have been developed employing various
exchange reactions, such as disulfide metathesis, transamina-
tion,33 transalkylation, and many others, for which we refer to
a recent mini review in Ref. 34.

III. EXCHANGE-REACTION THERMODYNAMICS
A. Equilibrium thermodynamics

We now present a thermodynamic framework to describe
the dynamics of a polymer mixture undergoing chain-
exchange reactions. There will be two steps, here we discuss
equilibrium thermodynamics features then in Sec. III B, we

will present the non-equilibrium thermodynamic ones. Since
the calculations for the attack-exchange reaction would be
rather similar, we will simply point out differences between
the two dynamics when appropriate. We assume that the mix-
ture contains m different monomer types {0, 1, 2 . . . , m− 1},
with m >1 so that polymer sequences can be defined.

In our modeling of the chemistry, we do not include the
solvent explicitly in the description. We refer the reader to
Ref. 16 for an illustration of an explicit inclusion of the solvent
in the kinetics and thermodynamics of polymerization mod-
els. We recall that the two exchange reactions we are interested
in conserve the following quantity N =

∑
Ω NΩ, which repre-

sents the total concentration of chains (including monomers).
Therefore, we define the polymer fraction of sequence
Ω as

yΩ =
NΩ
N

, (5)

which obeys the normalization condition
∑
Ω yΩ = 1. We

assume that the solution is dilute and thus the chemical
potentials of all present species follow the form

µΩ = µ
◦
Ω

+ kBT ln yΩ, (6)

where T is the temperature. The enthalpy of the solution can be
expressed in terms of h◦

Ω
the standard enthalpy of a sequence

Ω as
H =

∑
Ω

NΩ h◦
Ω

. (7)

Likewise, the entropy can be defined in this manner,

S =
∑
Ω

NΩ(s◦
Ω
− kB ln yΩ), (8)

where s◦
Ω

represents the internal contribution of the entropy
associated with other degrees of freedom different fromΩ and
not described here. We will also use the system entropy per
chain S defined as

S = S
N
=

∑
Ω

yΩ(s◦
Ω
− kB ln yΩ). (9)

Let us define G = H � TS as the Gibbs free energy.
Using µΩ = hΩ − TsΩ, we find G =

∑
Ω NΩµΩ =

∑
Ω NΩ(µ◦

Ω

−kBT ln yΩ). In the remainder of this paper, we will take kB = 1.

B. Non-equilibrium thermodynamics

We now move to a description of the non-equilibrium ther-
modynamic part of the problem, and to do that we introduce
the kinetic rate equation for the concentration of chains with
sequence Ω is

ṄΩ =
∑

ωA=Ωω
−1
B

∑
ωC

∑
ωD

[
vωAωD
ωCωB

− vωAωB
ωCωD

]
. (10)

The kinetic constant is taken to be dependent on the exact
sequences and on the sites of splitting. The chain-exchange
reaction exchanges chemical bonds between subsequences of
nonzero length. As such, the set of subsequences we consider
cannot be empty (ω , ∅) and a total sequence is at least of
length 2. For convenience, we choose to make this instruction
implicit.

The second term is equivalent to the back reaction of the
first term. When summing over all possible sequences Ω, the
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first sequence sum turns into a sum over subsequencesωA and
ωB [all distinct ordered pairs (ωA,ωB) are generated],∑

Ω

∑
ωA=Ωω

−1
B

=
∑
ωA

∑
ωB

, (11)

which generates the symmetry
∑
Ω ṄΩ = −

∑
Ω ṄΩ. This

of course implies the conservation of the number of chains∑
Ω ṄΩ = 0. The entropy production rate Σ of an ensemble of

chemical reactions, assumed to be elementary (there should be
no hidden chemical reactions), taking the form35

Σ =
∑

k

(v+
k − v

−
k ) ln

( v+
k

v−k

)
≥ 0, (12)

where v+
k , v−k are, respectively, forward and backward reaction

rates of the kth reaction. In the specific case of chain-exchange
reactions, this becomes

Σ =
1
4

∑
Λ

[
vωAωD
ωCωB

− vωAωB
ωCωD

]
ln

(
vωAωB
ωCωD

vωAωD
ωCωB

)
, (13)

where the sum is carried out over Λ, which represents an arbi-
trary set of four sequences of the form {ωA,ωB,ωC ,ωD}. The
factor 4 can be understood as the cardinal of a discrete group
G acting on elements of Λ. This group contains the follow-
ing 4 elements: G = {I , χ, π, ρ}, where I is the identity, χ
presents the exchange ωA → ωC , π presents the exchange
ωB → ωD, and ρ presents the combined exchange ωA → ωC

and ωB → ωD. Similarly, for attack-exchange, the relevant
group H contains instead the elements: H = {I , χ}. Since the
cardinal of H is 2 instead of 4 for G, the equivalent of Eq. (13)
for attack-exchange should contain a factor 2 in the place of
the factor 4.

Detailed balance should hold at equilibrium, which pro-
vides the following relation:

kωAωB,ωCωD yeq
ωAωB yeq

ωCωD

= kωAωD,ωCωB yeq
ωAωD yeq

ωCωB . (14)

Then, the condition ∆µ = 0 together with Eq. (6) leads to

T ln

(
yeq
ωAωB yeq

ωCωD

yeq
ωCωB yeq

ωAωD

)
= −∆µ◦ωAωB,ωCωD

= µ◦ωAωD
+ µ◦ωCωB

− µ◦ωCωD
− µ◦ωAωB

.

(15)

Combining this relation with detailed balance (14), one obtains

T ln

(
kωCωD,ωAωB

kωAωD,ωCωB

)
= −∆µ◦ωAωB,ωCωD

. (16)

We emphasize that for energetically neutral reactions, the for-
ward and backward rates are equal, which implies ∆µ◦ = 0.
In that case, a compensation between standard entropy and
enthalpy must occur, since ∆h◦ = T∆s◦.

If we now calculate the time evolution of the enthalpy H,
we obtain

dH
dt
=

∑
Λ

[
vωAωD
ωCωB

− vωAωB
ωCωD

]
h◦ωAωB

=
1
4

∑
Λ

[
vωAωD
ωCωB

− vωAωB
ωCωD

]
∆h◦ωAωB,ωCωD

, (17)

where we used the symmetry to write the evolution in single-
reaction enthalpy changes

∆h◦ωAωB,ωCωD
= h◦ωAωB

+ h◦ωCωD

−h◦ωAωD
− h◦ωCωB

. (18)

Similarly, for the entropy, we obtain

dS
dt
=

1
4

∑
Λ

[
vωAωD
ωCωB

− vωAωB
ωCωD

]

×

[
∆s◦ωAωB,ωCωD

− ln

(
yωAωB yωCωD

yωAωD yωCωB

)]
. (19)

We can combine Eqs. (15), (17), and (19) to get

dG
dt
=

T
4

∑
Λ

[
vωAωB
ωCωD

− vωAωD
ωCωB

]

× ln

(
yωCωB yωAωD yeq

ωAωB yeq
ωCωD

yeq
ωCωB yeq

ωAωD yωAωB yωCωD

)
. (20)

Using detailed balance (14) into Eq. (20), one recovers
the previous expression defined in Eq. (13) for the entropy
production rate Σ,

−
1
T

dG
dt
= Σ = −

∑
Ω

ṄΩ ln
( NΩ

Neq
Ω

)
≥ 0. (21)

Since G = H � TS, this equation is equivalent to Ṡ =

Σ + Ḣ/T , which expresses the second law of thermodynam-
ics for a closed system. As expected, the heat released by
the system into the environment Q is the change of enthalpy
Q = ∆H. Equation (21) is important to guarantee that the
chemical system reaches a unique equilibrium state on long
times.16

C. Decomposition of the entropy production

Here, we split the entropy production of the polymer mix-
ture into two contributions, where the first one represents the
contribution of the various polymer lengths, while the sec-
ond one represents that of their sequences. Using Eqs. (5) and
(21), we can rewrite the entropy production rate Σ in terms of
polymer fractions,

Σ = −N
d
dt

∑
Ω

yΩ ln
( yΩ

yeq
Ω

)
= −N

d
dt

∑
Ω

yΩ
( µ◦
Ω

T
+ ln yΩ

)
. (22)

Since the polymer fractions yΩ for all sequencesΩ are nor-
malized, yΩ can be interpreted as the probability to observe a
chain of sequence Ω among all possible sequences. Further-
more, since the polymer of sequence Ω has only one possible
length, namely, l = |Ω|, that probability to observe a polymer
with sequence Ω can be denoted equivalently PΩ,l(t) because
the length is a redundant variable. At any time t, we have
therefore the identification

yΩ(t) = PΩ,l(t). (23)

To proceed, we then factorize PΩ,l(t) in the following way:

PΩ,l(t) = Yl(t) Ul,Ω(t), (24)
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with Y l(t) the probability distribution of polymer length at
time t, and Ul,Ω(t) the conditional probability distribution of
the sequence, and conditional on the length l. The distributions
Y l and Ul,Ω are normalized:

∑
l Yl(t)= 1, and

∑
Ω Ul,Ω(t)= 1

provided the sum is restricted to all chains that have a
length l.

The inspiration for the factorization in Eq. (24) comes
from the work of Andrieux and Gaspard,10 where a similar
relation has been used to model the thermodynamics of copoly-
merization of a single polymer. Let us emphasize, however,
important differences between our work and this reference. In
the work of Andrieux and Gaspard, a single polymer grows
and shrinks by the addition or removal of single units at one of
its end, which leads to a steady growth regime on long times. In
that steady growth regime, the polymer has a time-dependent
length distribution Y l(t) but a stationary sequence distribution
for length l, Ul,Ω. In contrast, we do not have a steady growth
regime here, we consider a polymer mixture rather than a sin-
gle polymer. Further, our polymers do not grow or shrink only
by the ends but undergo exchange reactions, which eventually
make the system relax to equilibrium instead of reaching a
non-equilibrium steady state as in the work of Andrieux and
Gaspard.

Unless indicated otherwise, the distributions Y l and Ul,Ω

are assumed to be time-dependent. For attack-exchange, how-
ever, the sequence relaxes more slowly than the length (as
shown in Appendix A). Therefore, there is a specific time win-
dow in which all the time dependence is carried by Ul,Ω and
not Y l: PΩ,l(t) = YlUl,Ω(t).

Let us now go back to the general case. Using Eqs. (22)–
(24), we deduce a splitting of the entropy production rate into
three contributions,

Σ = −N
d
dt

[ ∑
l

Yl ln Yl +
∑
Ω,l

YlUl,Ω ln Ul,Ω

+
∑
Ω,l

YlUl,Ω
µ◦
Ω

T

]
. (25)

The various terms in this decomposition are:

• The first term:
∑

l Yl ln Yl represents the disorder in the
length distribution Y l (or length entropy).

• The second term:
∑
Ω,l YlUl,Ω ln Ul,Ω represents the dis-

order in the distribution of sequences (or sequence
entropy). Importantly, this term is weighted by the
length distribution Y l and therefore introduces a cou-
pling between length and sequence distributions. As a
result, one expects that the dominant contribution to
this sequence entropy will come from short sequences.

• The final contribution:
∑
Ω,l YlUl,Ω µ◦

Ω
/T comes from

the standard free energy change of each species.
If we choose µ◦

Ω
such that our reactions are ener-

getically neutral: ∆µ◦ = µ◦ωAωB
+ µ◦ωCωD

− µ◦ωCωB

− µ◦ωAωD
= 0, this term vanishes. This term can be

split further into two using µ◦ = h◦ − Ts◦. Two
terms will appear,

∑
Ω,l YlUl,Ω h◦

Ω
, which corresponds

to the heat exchanged with the surrounding medium
and

∑
Ω,l YlUl,Ω s◦

Ω
which corresponds to an internal

entropy contribution to Σ.

Given an initial distribution Y I
l , U I

l,Ω and final distribution

YF
l , UF

l,Ω, the total entropy production per chain ∆Stot in that
transformation follows from (25),

∆Stot =
∑

l

(
Y I

l ln Y I
l − YF

l ln YF
l

)
+
∑
Ω,l

(
Y I

l U I
l,Ω ln U I

l,Ω − YF
l UF

l,Ω ln UF
l,Ω

)
+
∑
Ω,l

(
Y I

l U I
l,Ω − YF

l UF
l,Ω

) µ◦
Ω

T
. (26)

To derive this result, we have used mainly the detailed balance
condition and the two conservation laws introduced earlier for
the total number of chains and of monomers.

IV. STOCHASTIC THERMODYNAMICS FRAMEWORK

Section III relied on mass action laws and kinetic
rate equations, which are appropriate in the thermodynamic
limit when the number of chains N → ∞. In a small
system where fluctuations matter, a different approach is
needed based on Stochastic Thermodynamics.17–19 We define
a state n= {nΩ1 , nΩ2 , nΩ3 , . . .}, as a vector containing the
numbers of each polymer (distinguished by their sequence
and length) present in the system. The probability to be in
a given state n, P(n), which obeys the following master
equation:36

dP(n)
dt
=

∑
n′

[Wn′→nP(n′) −Wn→n′P(n)], (27)

where Wn→n′ is the transition rate to jump from n to n′. Given
the size of the sequence space, this equation is difficult to solve
analytically, but we can nevertheless derive some useful results
from it.

It is important to appreciate that the states n have an
internal degeneracy z(n), which follows from all the allowed
permutations among polymer sequences compatible with that
state,

z(n) =
N!

nΩ1 !nΩ2 ! . . . nΩn ! . . .
=

N!∏
Ω(nΩ!)

. (28)

The analogues of the ensemble averaged number of poly-
mers of sequence Ω, NΩ and of the entropy S introduced in
Sec. III A are the stochastic particle number nΩ and the stochas-
tic entropy s. The connection between the two descriptions is
that

NΩ = 〈nΩ〉, (29)

S = 〈s〉, (30)

where the average is taken with respect to the distribution P(n).
Now, the expression of the stochastic entropy s is37

s(n) = − ln P(n) + ln z(n) + s◦(n), (31)

where the first term on the right-hand side gives after averaging
over the distribution of n the Shannon entropy of that distri-
bution, the second term is the contribution of the degeneracy
while the last term is the internal entropy coming from non-
described molecular degrees of freedom. The precise definition
of that last term is
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s◦(n) =
∑
Ω

nΩs◦
Ω

, (32)

in terms of s◦
Ω

, the intensive standard entropy of formation
introduced in Eq. (9).

Assuming the reaction n → n′ is elementary (i.e., the two
vectors differ by only one recombination reaction among two
of their components), the detailed balance condition is

Wn→n′

Wn′→n
=

z(n′)
z(n)

exp(−β∆µ◦), (33)

where β = 1/T and ∆µ◦ is the chemical potential difference
of the elementary exchange reaction introduced in Sec. III B.
We recall that the latter may be split into ∆µ◦ = ∆h◦ − T∆s◦.

In the absence of degeneracy, the ratio ln Wn→n′/Wn′→n
would correspond to the stochastic heat transferred from the
system to the reservoir during that transition. However, in
present case, due to the degeneracy, the correct definition of
the stochastic heat, δq is

− βδq = ln
Wn→n′

Wn′→n
− ln

z(n′)
z(n)

− ∆s◦. (34)

Using (33) and (34), it follows immediately that

δq = ∆h◦. (35)

When summing (35) over all transitions, we obtain the total
heat q(t) exchanged with the heat bath, at time t, in the form
of a sum over all past events indexed by j,

q(t) =
∑

j

δqj. (36)

According to the second law of Stochastic Thermody-
namics,17,19 the total entropy production on this trajectory
is

∆stot = ∆s + ∆sm, (37)

where ∆s is the change of system entropy between the final
and initial states and ∆sm the change in medium entropy. The
latter is fundamentally associated to the heat defined above by
∆sm = −βq.

Given Eq. (31), the difference of system entropy is

∆s = ln
P(nI )
P(nF)

+ ln
z(nF)
z(nI )

+ s◦(nF) − s◦(nI ), (38)

which when combined with Eqs. (32)–(34), leads to the
expected central result that the total entropy production is the
ratio of the probability of forward paths to that of backward
paths,

∆stot = ln
P(nI )WnI→n1 . . .WnF−1→nF

P(nF)Wn1→nI . . .WnF→nF−1
. (39)

The contribution due to degeneracy can be further split as

1
N

ln
z(nF)

z(nI)
=

1
N

ln

∏
Ω nI
Ω

!∏
Ω nF
Ω

!
= ∆sL + ∆sω , (40)

with ∆sL being the length entropy per chain and ∆sω being the
weighted sequence entropy per chain of a finite system,

∆sL =
1
N

ln

∏
l nI

l !∏
l nF

l !
,

∆sω =
1
N

ln

∏
Ω nI
Ω

!∏
Ω nF
Ω

!
−

1
N

ln

∏
l nI

l !∏
l nF

l !
.

(41)

A. Connection to the macroscopic approach

It is interesting to check that the above framework is
compatible with the expressions obtained previously in the
macroscopic approach. We assume that there is no distri-
bution of the initial condition. Therefore, in the change of
stochastic system entropy defined in Eq. (38), we need to
focus on P(nF) since P(nI ) = 1 and therefore ln P(nI ) = 0.
In order to evaluate P(nF), let us assume that the system
has reached equilibrium at the final time. For a macroscopic
system that probability distribution takes the equilibrium
form

P(nF) = z(nF)
∏
Ω

(yΩ)nF
Ω , (42)

where we have used the definition of the degeneracy factor
in Eq. (28) and the conservation law of the number of chains∑
Ω nΩ = N . To make the connection with the macroscopic

description, we can show that the polymer fractions yΩ previ-
ously defined in Eq. (5) must also be the ensemble average of
nΩ divided by N,

yΩ =
〈nF
Ω
〉

N
, (43)

where the average is taken with respect to the equilibrium
distribution of Eq. (42). Now, by reporting Eq. (42) into Eq.
(31), one finds

s(nF) = −
∑
Ω

nF
Ω

ln yΩ + s◦(nF). (44)

When this expression is averaged over the equilibrium distribu-
tion of Eq. (42), one recovers using Eqs. (29) and (32) the famil-
iar expression of the entropy introduced in the equilibrium
thermodynamics section, namely, Eq. (8).

Let us discuss the connection to the macroscopic approach
for the separate contributions of length and sequence. We
start by using Stirling’s approximation in Eq. (41), ln n!
= n ln n − n + O(ln n). In this limit, one recovers the expected
contributions to the entropy:

∆sL ≈
∑

l

[ nI
l

N
ln

nI
l

N
−

nF
l

N
ln

nF
l

N

]
,

∆sω ≈
∑
l,Ω

[ nI
Ω

N
ln

nI
Ω

N
−

nF
Ω

N
ln

nF
Ω

N

]
− ∆sL. (45)

In the thermodynamic limit, the probability distribution of nΩ
becomes peaked around the value 〈nΩ〉 = NΩ. By replacing nΩ
by NΩ and nl by N l and using the definitions: NΩ = NYlUl,Ω

and N l = NY l, in Eq. (45), one recovers precisely the first
two terms in (26). In this limit, the nΩ becomes deterministic,
therefore, the first term in Eq. (38) becomes negligible.

Finally, we note that the heat per polymer is:
q
N
=

∑
l,Ω

[
YF

l UF
l,Ω − Y I

l U I
l,Ω

]
h◦
Ω

, (46)

while the internal entropy part is similarly

S◦ =
∑
l,Ω

[
YF

l UF
l,Ω − Y I

l U I
l,Ω

]
s◦
Ω

. (47)

By combining Eqs. (45)–(47), we see that we recover all the
terms in the entropy production of Eq. (26) obtained in the
macroscopic approach.
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V. SIMULATIONS WITH ENERGETICALLY
NEUTRAL REACTIONS

In a mean-field description, a mixture of well stirred react-
ing polymers undergoing exchange reactions is simulated with
a Gillespie (Dynamic Monte Carlo) algorithm.38 In this sec-
tion, we study numerically the relaxation of thermodynamic
quantities∆sL and∆sω for such a system. The simulation uses a
list of length N, in which each entry corresponds to a sequence
stored as a string. This list is updated for every subsequent
reaction step and changes in ∆sL and ∆sω are calculated from
Eq. (41).

For energetically neutral chain-exchange reactions, the
forward and backward rates are equal: kωAωB,ωCωD =

kωAωD,ωCωB . For simplicity, we choose these reaction rates to
be constant independent of the sequence: kωAωB,ωCωD = 1.

A. Equilibrium length distributions

We will first study the length distribution Y l = N l/N, with
N l the number of polymers of length l, and N the total num-
ber of polymers. We have two separate conservation laws for
the number of chains:

∑∞
l=lmin

Nl = N and for the number of
monomers (mass conservation):

∑∞
l=lmin

lNl = M, with lmin the
length of the shortest possible species. Now, detailed balance
imposes NlA NlB = NlC NlD with lA + lB = lC + lD, which leads
to an exponential length distribution: Nl = A(B)l−lmin , where A
and B are constants depending on the mechanism. Solving the
algebraic equations for N l for chain-exchange where lmin = 2
yields

N =
A

1 − B
, M = −

AB2(B − 2)

B2(1 − B)2
=

A(B − 2)

(1 − B)2
, (48)

from which we find

A = *
,

N
M
N − 1

+
-

, B = *
,

M
N − 2
M
N − 1

+
-

. (49)

We thus have an expression for Y eq
l ,

Y eq
l =

1
M
N − 1

*
,

M
N − 2
M
N − 1

+
-

l−2

. (50)

For attack-exchange, lmin = 1 and a similar calculation leads
to

Y eq
l =

N
M

(
1 −

N
M

) l−1

. (51)

Such exponential length distributions were already obtained
long ago by Flory,6 Blatz, and Tobolsky7 in their pioneering
work on reversible polymerization.

It is important to appreciate that these equilibrium distri-
butions also hold when the polymers contain different types of
monomers (i.e., when m , 1). Indeed, the conservation laws
and detailed balance conditions hold and fix the equilibrium
length distribution independently of the chemical composition;
therefore, they cannot depend on m. This may no longer be the
case, however, when there is an energy function attached to
the polymers depending specifically on the chemical nature of
the monomers.

B. Equilibrium sequence distributions

Let us now discuss the equilibrium state of sequences.
When there is no energy function and when monomers are
equally abundant, all ml possible sequences of length l are
equiprobable, thus: Ueq

l,Ω = 1/ml. At equilibrium, the weighted
sequence disorder for both mechanisms reaches the same
maximum value,

−
∑
Ω,l

Y eq
l Ueq

l,Ω ln Ueq
l,Ω = −

∑
l

Y eq
l ln

( 1

ml

)
= −

∑
l

lY eq
l ln

( 1
m

)
=

M
N

ln(m). (52)

C. Kinetics

In this system, we can consider the following relaxation
times as shown in Table I: (i) the mean reaction time is 1/k,
(ii) the waiting time τr is the time it takes to perform the
next chemical reaction. For instance for attack-exchange, this
time is the mean reaction time divided by the total number of
reactions. Since each reaction involves one terminal unit of
one polymer and another polymer from the pool, the number
of reactions equals the number of bonds, M � N, times the
number of polymers N. Then, (iii) is the relaxation time of
the length τl, which is defined as follows. From the kinetic
rate equations, it can be shown that the number of poly-
mers of length l, N l can be written as a sum of exponentials,
and τl is the longest relaxation time in that decomposition.
Then, (iv) a characteristic time for sequence relaxation, τω ,
is defined as the longest relaxation time for subsequences
of length 2 or larger. In Appendices A and B, we provide
calculations to justify the expression of τl and τω given in
Table I.

In our simulations, we have chosen τω in order to con-
struct a dimensionless time t̂ = t/τω . We start with an initial
population of molecules, and then use the Gillespie algorithm
to generate a trajectory through the space of compositions. In
order to evaluate the various contributions to the total entropy
production introduced in (41).

In Fig. 3, simulation results for the two contributions to the
system entropy per chain, namely, ∆sL and ∆sω are shown as
a function of time. The total number of chains is either N = 32
or N = 2042, and the initial condition has an equal amount of
000 and 111 chains. The figure shows that at time t̂ = 3, the
system has reached equilibrium. This equilibrium, however,
differs from the macroscopic equilibrium, corresponding to
the dashed lines, when N is small. When the system size is
sufficiently large (in our simulation: N = 2048), there is a good

TABLE I. Expressions of the various relaxation times: τr waiting time for a
reaction to occur, τl relaxation time of the length, τω relaxation time of the
sequence.

Reaction τr τl τω

Attack-exchange 1
kN(M−N)

1
kM

1
kN

Chain-exchange 2
k(M−N)2

1
k(M−N)

1
k(M−N)
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FIG. 3. Difference in length and sequence entropy per chain:∆sL (red square)
and∆sω (blue diamond), as function of time t̂ for chain-exchange. The number
of polymers are (a) N = 32 or (b) N = 2048. The initial composition consists
of sequences 000 and 111, in equal abundance. The entropy differences in the
thermodynamic limit, ∆Seq

L and ∆Seq
ω are shown as dashed lines.

agreement with the values of Eq. (26),

∆Seq
L =

∑
l

[
Y I

l ln Y I
l − Y eq

l ln Y eq
l

]
,

∆Seq
ω =

∑
l,Ω

[
Y I

l U I
l,Ω ln U I

l,Ω − Y eq
l Ueq

l,Ω ln Ueq
l,Ω

]
. (53)

As can be seen in Fig. 3, the weighted sequence disorder
∆sω differs more from its macroscopic expression than the
length disorder ∆sL for small values of N. The reason is that
many sequences are not present or not sufficiently abundant
in that case, which explains the lack of convergence to the
macroscopic limit.

D. Entropic exchange induced by partially
equilibrated sequences

We now focus on a case where the initial condition of the
system is out of equilibrium for the length distribution but in a
state of partial equilibrium for the sequence (given the chosen
initial length). In that case, the weighted sequence entropy
starts initially at its maximal value, while the length entropy
is not maximum.

This case is illustrated in Fig. 4. Since we plot the entropy
difference with respect to the final equilibrium value, the

FIG. 4. Idem as in Fig. 3, except that the initial composition consists of 8
sequences of length 3 that can be made with two monomer types in equal
amount.

FIG. 5. Difference in sequence entropy per chain after relaxation, averaged
over a time window of 30τω , as function of the number of chains N. The
initial condition contains the 2l

A sequences that exist for a given length lA,
with: lA = 3 (green circle), lA = 4 (purple diamond), lA = 5 (red square), and
lA = 6 (blue diamond). In the thermodynamic limit, we have ∆Seq

ω = 0.

difference of sequence entropy starts at zero and then becomes
negative. In the figure, the macroscopic limit of that quantity
shown as the dashed blue line is zero. This is easy to verify.
Indeed, if the sequence is relaxed from the start,

∆Seq
ω =

∑
l,Ω

[Y I
l − Y eq

l ]l ln m

=

[ M
N
−

M
N

]
ln m = 0. (54)

In the course of the simulation, the length distribution broad-
ens. For the short polymers, there will typically be enough
polymers to have a complete set of all the sequences for that
length. However, for longer polymers, many sequences will
be absent. As a result, the sequence entropy cannot reach its
macroscopic limit.

In any case, the negative contribution of the sequence
entropy is offset by that of the length entropy in agreement
with the second law that imposes that the sum of the two terms
be positive. It is important to point out that this finite size
effect only exists for specific choices of initial conditions and
disappears in the thermodynamic limit when N → ∞.

We have studied the dependence of this effect for various
polymer lengths as shown in Fig. 5. In this figure, we have
chosen the initial condition of the system to be an ensemble
of polymers of the same length with Yl = δlA

l with a com-
plete set of all possible 2lA sequences, uniformly distributed.
We then evaluate ∆sω by averaging over a time window of
length 30τω , after at least 3τω have elapsed. The figure shows
that this time averaged ∆sω decreases with increasing lA at a
fixed number of chains. This is compatible with the fact that
∆sω is largely controlled by the weighted sequence entropy of
the initial state. As lA increases, so does the number of con-
figurations in the initial state, and therefore also its sequence
entropy.

VI. SIMULATIONS WITH ENERGETICALLY
NON-NEUTRAL REACTIONS

In this section, we introduce a simple example of an energy
landscape. We assume that there is a certain local energy func-
tion, dependent on the nature of the bonds between the nearest
neighboring monomers in a sequence. We denote with ñω the
total number of bonds ω, which are present among all the
polymers of the system. This number is

ñω =
∑
ωA,ωB

nωAωωB . (55)
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When only two monomer types are present, the only relevant
exchange reaction at the level of subsequences is

ωA00ωB + ωC11ωD −−−→←−−− ωC10ωB + ωA01ωD, (56)

since the other reactions do not change bond composition.
Let us introduce the standard chemical potential of the various
bonds: µ̃◦00, µ̃◦01, µ̃◦10 and µ̃◦11. Then the forward rate of reaction

(56) is k+ ∼ exp
(
−β(µ̃◦00 + µ̃◦11)

)
while the backward rate

is k− ∼ exp
(
−β(µ̃◦01 + µ̃◦10)

)
. The detailed balance condition

imposes
ñeq

00 ñeq
11

ñeq
01 ñeq

10

=
k−

k+ = exp
(
−β∆µ̃◦

)
, (57)

in terms of the standard chemical potential change ∆µ̃◦ =
µ̃◦01 + µ̃◦10 − µ̃

◦
00 − µ̃

◦
11. In practice, the reaction (56) can only

occur if the two reacting subsequences are present on different
polymer chains. In order to simplify the modeling, we use
a mean-field approximation, which corresponds to assuming
that any subsequence can react with any other subsequence
independently of the chain that carries them.

Using (57), we can find ñeq
ω at equilibrium and compare

it to its initial values ñI
ω . In order to evaluate the heat, we

assume that there is no change of internal entropy during a
recombination reaction, which means that∆s̃◦ = 0 at all times.
As a result, on long times, the stochastic heat defined in Eq.
(34), q(t → ∞) equals the difference in standard chemical
potential,

q(t → ∞) = (ñeq
00 − ñI

00)∆µ̃◦. (58)

We consider two kinds of initial sequences: (a) of the form
0 101 010 101 and 1 010 101 010 in equal abundance, and (b)
of the form 0 000 000 000 and 1 111 111 111 in equal abun-
dance. In both cases, we took ∆µ̃◦ = −2kBT . Therefore, (a)
is high in energy because it is rich in 01 and 10 bonds and
(b) is low in energy since it is rich in 00 and 11 bonds. As
a result, we expect q(t → ∞) to be negative for case (a) and
positive for case (b). We will now proceed to find the equilib-
rium distributions, in order to calculate the entropy changes for
N → ∞.

Let us assume a symmetric initial condition, in the relative
amount of subsequences 00 and 11, including terminal and
initial positions. Since the only relevant reaction is given by
Eq. (56), this symmetry will persist and we will have ñ00 = ñ11

and ñ01 = ñ10 at all times. As a result, Eq. (57) simplifies
into

ñeq
00

ñeq
01

= exp

(
−β∆µ̃◦

2

)
. (59)

The free energy of the system can be written in terms
of: (i) entropy of the length distribution, (ii) standard free
energy of the subsequences, (iii) entropy of the subsequence
distribution. Since (i) is not coupled to (ii) and (iii), we can
maximize (i) independently. Consequently, we obtain the same
length distribution as in the energetically neutral case: (50). For
less symmetric cases or more complex energy landscapes, Y eq

l
should be modified.

An explicit expression of the equilibrium sequence distri-
bution for given length: Ueq

l,Ω can be found from the following
argument. A given sequence Ω has an energy eΩ correspond-
ing to its bond composition. We define nB as the number of

FIG. 6. Difference in length entropy ∆sL (red square), sequence entropy ∆sω
(blue diamond), and heat per chain q/N (purple circle) as function of time t̂
for a variant of chain-exchange dynamics with an energy function dependent
on neighboring bonds. We start with N = 2048 polymers of sequence: (a)
0 000 000 000 and 1 111 111 111;(b) 0 101 010 101 and 1 010 101 010. Dashed
lines represent thermodynamic limits as in previous figures.

bonds of the type 00 and 11 in Ω. Therefore: eΩ = nB∆µ̃
◦/2.

There are 2
(

l−1
nB

)
species of length l with nB of such bonds. We

thus find for Ueq
l,Ω,

Ueq
l,Ω =

exp (−βeΩ)∑l−1
nB=0 2

(
l−1
nB

)
exp

(
−
βnB∆µ̃◦

2

)
=

exp (−βeΩ)

2
(
1 + exp

(
−
β∆µ̃◦

2

)) l−1
. (60)

To perform simulations, we use the Gillespie scheme with
an energy-dependent rejection Monte Carlo step, where rejec-
tions lead to the repetition of this selection until a next reaction
is accepted. With this energy landscape, the sequence relax-
ation time becomes (see Appendix A for a derivation of that
result)

τω =
exp

(
−
β∆µ̃◦

2

)
k(M − N)

. (61)

This calculation shows that the modification of the character-
istic time of relaxation of the sequence is the main effect of
introducing energy landscape, at least in this simple model.

In Fig. 6(a), heat is liberated, as additional bonds of type 00
and 11 are formed. In Fig. 6(b), the system takes up heat from
the environment. In all cases, we have:∆sL +∆sω− βq/N ≥ 0.
In this symmetric example, the energy landscape only affects
the sequence, not the length. When sequence complementarity
or secondary structure is considered, this may no longer be the
case.

VII. CONCLUSION

In this work, we have studied the relaxation of a pool
of information-carrying polymers kept in a closed system
but dynamically evolving under the action of reversible
recombination reactions. We have focused on two types of
recombination reactions, namely, attack-exchange and chain-
exchange because they are simple, energetically neutral,
robust, and potentially relevant for prebiotic chemistry since
they do not require catalysts. We have developed a stochastic
thermodynamic framework to analyze the dynamic evolution
of thermodynamic quantities such as heat or entropy under
such reactions.
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Inspired by the work of Andrieux and Gaspard,10 we have
introduced in Eq. (26) a splitting of the entropy production
into three contributions: the length disorder, the sequence dis-
order weighted by the length distribution, and the standard
free energy change. This key result indicates that for finite
systems a coupling exists between weighted sequence disor-
der and length disorder. Thus, we find that for some choice
of initial conditions, the weighted sequence disorder can be
decreased at the expense of an increase of length disorder; a
finite size effect that however disappears in the thermodynamic
limit.

In the context of prebiotic systems, an important ques-
tion is whether or not recombination reactions can lead to the
formation of long, catalytically active polymers. For simple
energy landscapes, length distributions become exponential
distributions, which only yield a small amount of large poly-
mers. In order to obtain non-exponential distributions, at least
one of the following ingredients is needed (i) energy land-
scapes favoring long species, (ii) time dependent forcing, and
(iii) exchange with an environment.

We have studied here the effect of an energy landscape (i)
by assuming that the energy lies only in neighboring bonds.
Despite the simplicity of that assumption, we have observed
that it leads to a modification of the characteristic time of relax-
ation of the sequence. Clearly, this is one of the simplest cases
and energy constraints can affect the dynamics in more com-
plex ways due to secondary and tertiary structure of nucleic
acids. Often, the secondary and tertiary structure of polymers
affects their collective interactions.39

Many possibilities exist concerning (ii), whereby a time
dependent forcing in the bulk rate constants or in boundary
conditions can affect the kinetics of polymerization such as in
day-night models of polymerization.40 Concerning (iii), one
way to describe the coupling of a system to an environment
is to introduce chemostats that impose that the concentration
of certain polymers be fixed. We have found in previous work
that such models have a rich dynamics even for polymers that
have no sequences.41 Such an approach based on Stochastic
Thermodynamics was extended for general chemical networks
in Ref. 20. We plan to explore in future work such an approach
to polymers that have a sequence. Finally, another interesting
research direction for (iii) concerns the exchange with a struc-
tured environment, which can take the form of compartments
as in Ref. 42 or more generally any element with a scaffolding
function.
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APPENDIX A: SEQUENCE RELAXATION DYNAMICS

This section contains a derivation of the length and
sequence characteristic times that have been introduced in

Table I. We start with the relaxation time of the sequence,
which has been defined as the characteristic time of ran-
domization of subsequences of length two as a result of
the reaction (56). We consider here only the chain-exchange
reaction.

Let us assume that the initial condition is symmetric with
respect to the content of 0 and 1 monomers in the pool. As
a result, this symmetry will remain at all times, and we can
introduce x and y variables such that ñ00 = ñ11 = x and ñ01

= ñ10 = y. In the mean-field approximation, the evolution of
equations of these variables are

dx
dt
= k−y2 − k+x2,

dy
dt
= k+x2 − k−y2, (A1)

where k+ is a forward rate and k� a backward rate. By summing
the two equations above, one recovers the conservation law
that the sum of x and y is constant. The constant is fixed by the
initial number of bonds: 2x + 2y = M � N. Therefore, we end
up with the equation

dx
dt
= k−

(M − N
2

− x
)2

−k+x2. (A2)

For neutral reactions, k+ = k� = k, the equation simplifies
into

dx
dt
= −k

[
(M − N)x −

(M − N
2

)2]
. (A3)

This linear ODE has a simple exponential as solution with the
characteristic relaxation time τω = 1/k(M − N), which was
given in Table I.

Let us now extend the above results to the case that tran-
sitions are affected by an energy landscape. We start with the
detailed balance condition: k+ = k− exp (−β∆µ̃◦). We now go
back to Eq. (A2) when k− , k+. We obtain a nonlinear ODE
of the form

dx
dt
= ax2 + bx + c. (A4)

With a, b, and c constants, given by

a = k− − k+,

b = k−(M − N),

c = k−
(M − N

2

)2
, (A5)

we note that
√

b2 − 4ac =
√

k+k−(M − N) > 0. Therefore, we
can make use of the integral∫ t

0
dt =

∫ x(t)

x(0)

dx

ax2 + bx + c

=
−2

√
b2 − 4ac

tanh−1
( 2ax(t) + b
√

b2 − 4ac

)
+ C. (A6)

Therefore, the solution is of the form

x(t) ∝ tanh
[−
√

b2 − 4ac
2

(t − C)
]

+ D, (A7)

where C and D are constants. As tanh(t) = (1−exp(−2t))/ (1+
exp(−2t), we can identify 1/

√
b2 − 4ac as a characteristic

sequence relaxation time τω equal to
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τω =
exp

(
−
β∆µ̃◦

2

)
k+(M − N)

, (A8)

which is precisely Eq. (61) of the main text.

APPENDIX B: LENGTH RELAXATION DYNAMICS

We now derive the characteristic time of length relaxation,
first for chain-exchange, and then for attack-exchange. The
amount of species of length l: N l evolves according to

dNl

dt
= k

∑
lA+lB=l

∞∑
lC ,lD

[NlA+lD NlC+lB − NlA+lB NlC+lD ]

= k
∞∑

lC ,lD

l−1∑
lB=1

NlD+l−lB NlC+lB − k(l − 1)Nl

∞∑
lx=2

(lx − 1)Nlx

= k
l−1∑

lB=1

*.
,
N −

l−lB∑
lx=2

Nlx
+/
-

*.
,
N −

lB∑
ly=2

Nly
+/
-
− k(l − 1)(M −N)Nl.

(B1)

Therefore, the homogeneous equation takes the form

dNl

dt
= k(l − 1)N2 − k(l − 1)(M − N)Nl, (B2)

which admits the solution

Nl =
N2

M −N
+

(
N I

l −
N2

M −N

)
exp[− k(l − 1)(M −N)t]. (B3)

We have introduced N I
l as the initial value of Nl(t).

Note that the exponential in the homogeneous solution is
proportional to l � 1, while the highest possible order in
the particular solution, arising from terms such as Nl−lB NlB
∝ exp(−k(l − lB − 1)(M − N)t) exp(−k(lB − 1)(M − N)t)
= exp(−k(l − 2)(M − N)t), is l � 2. We therefore have no
resonant terms for any N l, and we can expect a solution of Eq.
(B1) of the form

Nl = A0,l +
l∑

n=2

An,l exp[−k(n − 1)(M − N)t], (B4)

where A0,l and An,l are constants depending on initial concen-
trations of all species. This expression confirms that the slowest
relaxation time of the length for chain-exchange reaction is
τl = 1/(k(M − N)) as given in Table I.

For attack-exchange, the kinetic equation for N l is

dNl

dt
= k

∞∑
lA,lB=1

[NlA Nl+lB − NlA+lB Nl]

+ k
l−1∑
lA

∞∑
lB=1

[NlA NlC+l−lA − NlNlC ]

= k
[
N(N −

l−1∑
lB=1

NlB ) +
l−1∑

lB=1

Nl−lB (N −
lB∑

lx=1

)

− (M + N(l − 1))Nl
]
. (B5)

Upon solving the homogeneous equations, the general
solution for every N l can be written as

Nl = A0,l +
l∑

n=1

An,l exp[−k(M + N(l − 1))t]. (B6)

For which the longest relaxation time is: τl =
1

kM .
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