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Abstract

We present an exact calculation for the scattering of light from a single sphere made of Faraday-active
material, to "rst order in the external magnetic "eld. We use a recent expression for the ¹-matrix of a Mie
scatterer in a magnetic "eld to compute the Stokes parameters in single scattering that describe #ux and
polarization of the scattered light. ( 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Several reasons exist why one wishes to understand light scattering from a dielectric sphere made
of magneto-active material. Single scattering is the building block for multiple scattering. Recently,
many experiments such as those reported by Erbacher et al. [1] and Rikken et al. [2] have been
done with di!use light in a magnetic "eld. It turns out that the theory using point-like scatterers in
a magnetic "eld, as "rst developed by MacKintosh and John [3], does not always enable
a quantitative analysis, for the evident reason that experiments do not contain `smalla scatterers.
This paper addresses light scattering from a sphere of any size in a homogeneous magnetic "eld.

The model of Rayleigh scatterers was used successfully to describe speci"c properties of multiple
light scattering in magnetic "elds, such as for instance Coherent Backscattering, Photonic Hall Ewect
(PHE) and Photonic Magneto-resistance (PMR). The "rst study of one gyrotropic sphere, due to
Ford and Werner [4], was applied to the scattering of semiconducting spheres by Dixon and
Furdyna [5]. For the case of magneto-active particles, for which the change in the dielectric
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constant induced by the magnetic "eld is small, a perturbational approach is in fact su$cient.
Kuzmin [6] showed that the problem of scattering by a weakly anisotropic particle of any type of
anisotropy can be solved to "rst order in the perturbation. Using a ¹-matrix formalism, Lacoste
et al. [7] developed independently a perturbational approach for the speci"c case of magneto-
optical anisotropy. This was successfully applied to compute the di!usion coe$cient for magneto-
transverse light di!usion [8]. Using the ¹-matrix for a Mie scatterer in a magnetic "eld we have
obtained, we discuss the consequences for the Stokes parameters [9] that describe the polarization
of the scattered light.

2. Perturbation theory

In this paper we set c
0
"1. In a magnetic "eld B, the refractive index is a tensor of rank two. For

the standard Mie problem, its value at position r depends on the distance to the center of the sphere
DrD, which has a radius a via the Heaviside function #(DrD!a), that equals 1 inside the sphere and
0 outside,

e(B, r)!I"[(e
0
!1)I#e

F
U]#(DrD!a). (1)

In this expression, I is the identity tensor, e
0
"m2 is the value of the normal isotropic dielectric

constant of the sphere of relative index of refraction m (which is allowed to be complex-valued) and
e
F
"2m<

0
B/u is a dimensionless coupling parameter associated with the amplitude of the

Faraday e!ect (<
0

being the Verdet constant, B the amplitude of the magnetic "eld, and u the
frequency). We introduced the antisymmetric hermitian tensor '

ij
"ie

ijk
BK
k
(the hat above vectors

notes normalized vectors). The Mie solution depends on the dimensionless size parameters x"ua
and y"mx. In this paper we restrict ourselves to non-absorbing media so that m and e

F
are

real-valued. Since e
F
+10~4 in most experiments, a perturbational approach is valid.

Upon noting that the Helmholtz equation is formally analogous to a SchroK dinger equation with
potential V(r,u)"[I!e(B, r)]u2 and energy u2, the ¹-operator is given by the following Born
series:

T(B, r,u)"V(r,u)#V(r,u) )G
0
(u, p) )V(r,u)#2. (2)

Here G
0
(u, p)"1/(u2I!p2Dp) is the free Helmholtz Green's operator in Gaussian rationalized

units for pure dielectric particles, and p"!i+ is the momentum operator. The tensor of rank two
(*

p
)
ij
"d

ij
!p

i
p
j
/p2 projects upon the space transverse to the direction of p. The ¹-matrix is

de"ned as

Tkp,k{p{"Sk,pDT D k@,p@T, (3)

where D k,pT(respectively, D k@,p@T) represents an incident (respectively, emergent) plane wave with
direction k and state of helicity p (respectively, k@ and p@).We will call T0 the part of T that is
independent of the magnetic "eld and T1 the part of the ¹-matrix linear in B. We have found the
following result [7]:

T1kp,k{p{"e
F
u2S(~k,pD#UD(k̀{,p{T, (4)
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where the (Bk,p (r) are the unperturbed eigenfunctions of the conventional Mie problem. This
eigenfunction represents the electric "eld at the point r for an incident plane wave D k,pT. This
eigenfunction is `outgoinga for (k̀,p and `ingoinga for (~k,p. Eq. (4) resembles the perturbation
formula for the Zeeman shift in terms of the atomic eigenfunctions, although here it provides
a complex-valued amplitude in terms of continuum eigenfunctions, rather than a real-valued energy
shift in terms of bound states.

3. T matrix for Mie scattering

In order to separate radial and an angular contribution in Eq. (4), we used a well-known
expansion of the Mie eigenfunction (k̀,p in the basis of vector spherical harmonics [10]. We choose
the quanti"cation axis z along the magnetic "eld. With this choice, the operator S

z
, the

z-component of a spin one operator, can be associated with the tensor !U. The eigenfunctions of
the operator S

z
form a convenient basis for the problem. The expansion of Eq. (4) in vector

spherical harmonics leads to a summation over quantum numbers J, J@, M and M@. The Wigner}
Eckart theorem applied to the vector operator S gives the selection rules for this case J"J@ and
M"M@.

The radial integration can be done using a method developed by Bott et al. [11], which gives,

T1k,k{
"

16p
u
=+

J,M

(!M) [C
J
Ye

J,M
(kK )YeH

J,M
(kK @)#D

J
Ym

J,M
(kK )YmH

J,M
(kK @)] (5)

with the dimensionless parameter:

="<
0
Bj.

j is the wavelength in the medium. The meaning of the indices e, m is explained in Appendix A. In
the limiting case of a perfect dielectric sphere with no absorption (Im(m)P0), the coe$cients are
given by

C
J
"

!c2H
J

u2
J
y

J(J#1) A
A

J
y
!

J(J#1)
y2

#1#A2
JB, (6)

D
J
"

!d2H
J

u2
J
y

J(J#1) A!
A

J
y
!

J(J#1)
y2

#1#A2
JB (7)

with A
J
(y)"u@

J
(y)/u

J
(y), u

J
(y) the Ricatti}Bessel function, and c

J
and d

J
the Mie amplitude

coe$cients of the internal "eld [9].
Two important symmetry relations must be obeyed by our ¹-matrix. The "rst one is parity

symmetry and the second one reciprocity. These relations can be established generally when the
Hamiltonian of a given system has the required symmetries (cf. Eq. (15.53) and Eq. (15.59a) P454 of
Ref. [10]). We give in Appendix A a less general derivation of these relations for our speci"c
problem:

¹
~kp,~k{p{(B)"¹kp,k{p{(B), (8)

¹
~k{~p{,~k~p(!B)"¹kp,k{p{(B). (9)
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We emphasize that p(!k)"!p(k), i.e. p indicates in fact helicity and not circular polarization.
The helicity is the eigenvalue of the operator S ) k.

3.1. The amplitude matrix

The amplitude matrix A relates incident and scattered "eld with respect to an arbitrary plane of
reference. A common choice is the plane that contains the incident and the scattered wave vector,
and which is for this reason called the scattering plane. We will call the linear base the base made of
one vector in this plane and one vector perpendicular to it. In this basis, the amplitude matrix
su$ciently far urA1, is simply de"ned from the ¹-matrix by

Ak,k{
"

!1
4pr

THk,k{"
ei(
iur A

S
2

S
3

S
4

S
1
B. (10)

/ is a phase factor that depends on the relative phase of the scattered wave with respect to the
incident wave and which is de"ned in Ref. [9]. The complex conjugation in Eq. (10) is simply due to
a di!erent sign convention in Newton [10]. When no magnetic "eld is applied, the ¹-matrix of the
conventional Mie-problem is given by a formula analogous to Eq. (5) where C

J
and D

J
have been

replaced by the Mie coe$cients a
J
and b

J
, and with M"1. Because of rotational invariance of the

scatterer, the "nal result only depends on cos h, the scalar product of k and k@, h is the scattering
angle. Therefore, we get in the circular basis (associated with the helicities p and p@):

¹0pp{"
2p
iu

+
Jz1

2J#1
J(J#1)

(aH
J
#pp@bH

J
)[p

J,1
(cos h)#pp@q

J,1
(cos h)]. (11)

Alternatively, the ¹-matrix may be expanded on the basis of the Pauli matrices

T0"
2p
iu

[(SH
1
#SH

2
)I#(SH

1
!SH

2
)p

x
]. (12)

In Eq. (11), the polynomials p
J,M

and q
J,M

are de"ned in terms of the Legendre polynomials PM
J

by [9],

p
J,M

(h)"
M

sin h
PM

J
(cos h), q

J,M
(h)"

d
dh

PM
J
(cos h). (13)

For M"1, p
J,1

and q
J,1

are polynomials of cos h of order J!1 and J, respectively, but not in
general for any value of M. When written in the linear basis of polarization, Eq. (11) implies that
a Mie scatterer has S

3
"S

4
"0 as imposed by the rotational symmetry. For the backward

direction h"p, the reciprocity symmetry implies that S
3
#S

4
"0 for an arbitrary particle

(possibly non-spherical) [9]. We will see that these two properties do not hold anymore when
a magnetic "eld is present.

3.2. General case for T1 when kK ]kK @O0

It remains to express the vector spherical harmonics in Eq. (5), as a function of the natural angles
of the problem. In Fig. 1, we give a schematic view of the geometry. In the presence of a magnetic
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Fig. 1. Schematic view of the magneto-scattering geometry. Generally, h denotes the angle between incident and
outgoing wave vectors, / is the azimuthal angle in the plane of the magnetic "eld and the y-axis. This latter is by
construction the magneto-transverse direction de"ned as the direction perpendicular to both the magnetic "eld and the
incident wave vector. Angle a coincides with angle h in the special but relevant case that the incident vector is normal to
the magnetic "eld.

"eld, the rotational invariance is broken because B is "xed in space. Because our theory treats
T1 linear in BK , T1 can be constructed by considering only three special cases for the direction of BK .
If kK and kK @ are not collinear, we can decompose the unit vector BK in the non-orthogonal but
complete basis of kK , kK @ and g("kK ]kK @/DkK ]kK @D. This results in,

T1kk{
"

(kK )kK )(kK ) kK @)!BK ) kK @
(kK )kK @)2!1

T1BK /kK {
#

(BK ) kK @)(kK )kK @)!BK ) kK
(kK ) kK @)2!1

T1BK /kK#(BK ) g( )T1BK /g( . (14)

The cases where BK is either along kK or kK @ turn out to take the form,

¹1pp{(BK "kK )"
p
u

[R
1
(cos h)p#R

2
(cos h)p@], (15)

¹1pp{(BK "kK @)"
p
u

[R
1
(cos h)p@#R

2
(cos h)p] (16)

with

R
1
(cos h)"!

2=
p

+
Jz1

2J#1
J(J#1)

[C
J
p
J,1

(cos h)#D
J
q
J,1

(cosh)], (17)

R
2
(cos h)"!

2=
p

+
Jz1

2J#1
J(J#1)

[D
J
p
J,1

(cos h)#C
J
q
J,1

(cosh)]. (18)
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In Ref. [7] we gave an expression for T1pp{(B
K "g( ) involving a double summation over the partial

wave number J and the magnetic quantum number M. It is actually possible to do the summation
over M explicitly, thus simplifying considerably the numerical evaluation. Indeed, if one expresses
T0 with respect to a z-axis perpendicular to the scattering plane for a given partial wave J, one ends
up with the following relation between the polynomials p

J,M
and q

J,M
,

p
J,1

(cosh)"2 +
JzMz1

C
(J!M)!
(J#M)!

q
J,M

(0)2 cos(Mh)D#q
J,0

(0)2, (19)

q
J,1

(cos h)"2 +
JzMz1

C
(J!M)!
(J#M)!

p
J,M

(0)2 cos(Mh)D#p
J,0

(0)2. (20)

Upon performing the derivatives of these relations with respect to h and comparing to the
expression for T1pp{(BK "g( ) we "nd,

¹1pp{(BK "g( )"
p
u

(Q
1
(h)#pp@Q

2
(h)) (21)

with

Q
l
(h)"!i

d
dh

R
l
(cos h)"i sin h

d
d cos h

R
l
(cos h), l"1, 2. (22)

We are convinced that a rigorous group symmetry argument exists that relates the derivative of
¹1pp{(BK "kK ) with respect to h to ¹1pp{(BK "g( ).

3.3. Particular case for T1 when kK "kK @ and kK "!kK @

The treatment in Section 3.2 becomes degenerate when kK and kK @ are collinear, i.e. in forward or
backward direction. In these cases, BK can still be expressed on a basis made of kK and of two vectors
perpendicular to kK . The contribution of these last two vectors has the same form as in T1pp{(BK "g( )
for h"0 or h"p, which vanishes. An alternative derivation consists to take the limit hP0 so that
R

1
"R

2
or hPp so that R

1
"!R

2
in Eqs. (15)}(18). This yields,

R
1
(1)"R

2
(1)"!

=
p

+
Jz1

(2J#1)(C
J
#D

J
), (23)

and

R
1
(!1)"!R

2
(!1)"!

=
p

+
Jz1

(!1)J`1(2J#1)(C
J
!D

J
). (24)

This means,

T1k,k
"U

2p
u

R
1
(1), (25)

and

T1k,~k"U
2p
u

R
1
(!1). (26)
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Both ¹-matrices contain the tensor U introduced in Eq. (1) for the dielectric constant of the
medium of the sphere. For these two cases, an operator can be associated with these ¹-matrices,
which is Sz since we have chosen B along the z-axis. For T1k,k

, the presence of the tensor U is to be
expected since we know that the forward scattering amplitude can be interpreted as an e!ective
refractive index in a transmission experiment [9]. In the framework of an e!ective medium theory,
the real part of Eq. (25) gives the Faraday e!ect whereas the imaginary part gives the magneto-
dichroism (i.e. di!erent absorption for di!erent circular polarization) of an ensemble of Faraday-
active scatterers.

4. Magneto-transverse scattering

From T1 matrix, we can compute how the magnetic "eld a!ects the di!erential scattering cross
section (summed over polarization) as a function of the scattering angle. Its form can be guessed
before doing any calculation at all, since it must satisfy mirror-symmetry and the reciprocity
relation dp/d) (kPk@,B)"dp/d)(!k@P!k,!B). A magneto-cross-section proportional to
BK ) kK or to BK ) kK @ is parity forbidden since B is a pseudo-vector. Together with the rotational
symmetry of the sphere the only possibility is

dp
d)

(kPk@,B)"F
0
(cos h)#det(BK ,kK , kK @)F

1
(cos h), (27)

where det(A,B, C)"A ) (B]C) is the scalar determinant constructed from these three vectors. The
second term in Eq. (27) will be called the magneto-cross section.

The magneto-cross section implies that there may be more photons scattered `upwardsa than
`downwardsa, both directions being de"ned with respect to the magneto-transverse vector kK ]BK
perpendicular to both incident wave vector and magnetic "eld. An easy calculation yields,

*p"p
61
!p

$08/
"pP

p

0

dh sin3 hF
1
(cos h). (28)

A non-zero value for *p will be referred to as a Photon Hall Ewect (PHE).
For Rayleigh scatterers, the above theory simpli"es dramatically because one only needs to

consider the "rst partial wave of J"1 and the "rst terms in a development in powers of y (since
y@1). From Eqs. (6) and (7) we "nd that, C

1
"!2y3/m2(2#m2)2 and D

1
"!y5/45m4. We can

keep only C
1

and drop D
1

as a "rst approximation. Adding all the contributions of Eqs. (14) and
(11), we "nd, in the linear base

Tk,k{
"A

t
0
kK ) kK @#it

1
BK ) (kK ]kK @) !it

1
BK )kK

it
1
BK ) kK @ t

0
B. (29)

where t
0
"!6ipaH

1
/u and t

1
"!6C

1
=/u. This form agrees with the Rayleigh point-like

scatterer discussed in Ref. [12].
A magnetic "eld breaks the rotational symmetry of the particle. If it is contained in the scattering

plane, Eq. (29) shows that we must have a non-zero value for S
3
and S

4
as opposed to the case when

no magnetic "eld is applied. This property still holds for a Mie scatterer, the di!erence being only
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Fig. 2. Magneto-scattering cross section F
1
(h) for a Rayleigh scatterer. The solid line is a positive correction and the

points denote a negative correction. The curve has been normalized by the parameter=. No Hall ewect is expected in this
case because the projection onto the y-axis of both corrections cancel.

present in the angular dependence of the elements of the amplitude matrix. A magnetic "eld also
violates the standard reciprocity principle as can be seen on Eq. (9). This implies that S

3
#S

4
is non

zero for the backward direction h"p. The relation S
3
#S

4
"0 for the backward direction was

derived by Van Hulst, but does not apply when a magnetic "eld is present. In fact, the magnetic
"eld imposes that S

3
"S

4
at backscattering. This is readily con"rmed by the Rayleigh particle, for

which Eq. (29) implies that S
3
#S

4
"2S

3
"!2it

1
BK )kK for h"p.

Eq. (29) yields F
1
(cos h)&<B cos h/k so that Eq. (28) gives *p"0. The magneto scattering cross

section is shown in Fig. 2 for a Rayleigh scatterer and in Fig. 3 for a Mie scatterer for which a non
zero value of *p is seen to survive.

5. Stokes parameters

To describe the #ux and polarization, a four-dimensional Stokes vector (I,Q,;,<) can be
introduced [9]. The general relation between scattered Stokes vector and incoming Stokes vector is

(I,Q,;,<)
065

"F(I,Q,;,<)
*/#

. (30)
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Fig. 3. Magneto-scattering cross section F
1
(h) for a Mie scatterer of size parameter x"2. The curve has been normalized

by the parameter=. The solid line is for positive correction and the points are the negative correction. Now, there is
a Hall ewect: *pO0.

For a sphere and without a magnetic "eld, the F-matrix is well known and equals [9],

F0
ij
"

1
k2r2 A

F
11

F
12

0 0

F
12

F
11

0 0

0 0 F
33

F
34

0 0 !F
34

F
33
B, (31)

where

F
11
"(DS

1
D2#DS

2
D2)/2,

F
12
"(!DS

1
D2#DS

2
D2)/2,

F
33
"(SH

2
S
1
#S

2
SH
1
)/2,

F
34
"i(!SH

2
S
1
#S

2
SH
1
)/2.

(32)

Among these four parameters only three are independent since F2
11

"F2
12
#F2

33
#F2

34
. The

presence of the many zeros in Eq. (31) is a consequence of the fact that the amplitude matrix in Eq.
(10) is diagonal for one Mie scatterer. It is in fact much more general. The form of Eq. (31) still holds
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for an ensemble of randomly oriented particles with an internal plane of symmetry (such as
spheroids for instance) [13]. In that case, the averaging is essential to get the many zeros in Eq. (31).
It also holds for a single anisotropic particle in the Rayleigh}Gans approximation [14,15].

For the Mie case, the anisotropy has two consequences: the F-elements that were zero for an
isotropic particle may take "nite values, and they may depend on the azimuthal angle /. When
a magnetic "eld is applied perpendicular to the scattering plane, corrections will appear in the
diagonal terms of the amplitude matrix. We will use the vector H to denote them. When a magnetic
"eld is applied in the scattering plane, the amplitude matrix becomes o!-diagonal, which will "ll up
the zeros in F0. We will use the vector G to denote these new terms.

If we call F1 the "rst-order magnetic correction to the F-matrix one "nds,

F1
ij
"

1
k2r2 A

H
11

H
12

ReG
3

!ImG
3

H
12

H
11

ReG
4

!ImG
4

ReG
1

ReG
2

H
33

H
34

ImG
1

ImG
2

!H
34

H
33

B. (33)

When BK is directed along kK , the G terms are given by

GBK /kK G
G

1
"(SH

1
RH

1
!S

2
R

2
)/2

G
2
"(!SH

1
RH

1
!S

2
R

2
)/2

G
3
"(!SH

1
RH

2
#S

2
R

1
)/2

G
4
"(SH

1
RH

2
#S

2
R

1
)/2.

(34)

The general case (forward and backward directions excluded) has

G"

(BK )kK )(kK )kK @)!BK ) kK @
(kK ) kK @)2!1

GBK /kK {
#

(BK )kK @)(kK ) kK @)!BK )kK
(kK ) kK @)2!1

GBK /kK , (35)

and GBK /kK {
is obtained from GBK /kK by exchanging R

1
and R

2
in Eq. (34) like in Eqs. (15) and (16).

Finally, we need,

H"(BK ) g( )HBK /g( (36)

with

HBK /g( G
H

11
"!Im(S

1
Q

1
#S

2
Q

2
)/2

H
12

"!Im(!S
1
Q

1
#S

2
Q

2
)/2

H
33

"Im(!S
1
Q

2
!S

2
Q

1
)/2

H
34

"Re(S
1
Q

2
!S

2
Q

1
)/2.

(37)

The F-matrix de"ned in Eq. (30) can contain at most 7 independent constants, resulting from the
8 constants in the amplitude matrix minus an irrelevant phase. Our F1-matrix has 12 coe$cients
(4 for the H vector and 8 for the G vector). Therefore, 5 relations must exist between these 12
coe$cients. These relations have not been explicitly derived.
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We can write all the expressions above in a very compact way using the basis of the Pauli
matrices [16]

F0
ij
"1

2
¹r(A0sp

i
A0p

j
),

F1
ij
"1

2
¹r(A1sp

i
A0p

j
)#1

2
¹r(A0?p

i
A1p

j
),

(38)

where ¹r is the trace of the matrix, the superscript - denotes Hermite conjugation, p
i
are Pauli

matrices and A0, A1 are zeroth and "rst-order correction in the amplitude matrix de"ned as the
T-matrix from Eq. (10).

If the incident light is unpolarized, the Stokes vector for the scattered light is simply equal to the
"rst column of the F-matrix in Eq. (33). For instance when BK is directed along kK , the magnetic "eld
will only a!ect ;"F1

31
and the circular polarization <"F1

41
which would be zero when no

magnetic "eld is applied. We choose to normalize the matrix elements F1
ij

that quantify the devi-
ation of the polarization from the isotropic case by the #ux F0

11
without magnetic "eld. In Fig. 4

we plotted these normalized matrix elements for the cases where BK is directed along kK and where
BK is directed along g( . We observe that o!-diagonal F-elements such as F1

12
and F1

41
, are generally

more important in the angle region of 140}1703, and increase with the size parameter. In this
region, these Stokes parameters seem to be very sensitive to anisotropy as also found from studies
of Stokes parameters of quartz particles [16].

The F-matrix of spherical scatterers in Eq. (31) contains 8 zeros among its 16 elements. This
property persists for an ensemble of randomly oriented non-spherical particles having a plane of
symmetry because of the averaging over all the orientations. In a magnetic "eld even spherical
scatterers can have a non-zero value for these 8 elements. Furthermore, we have good reasons to
believe that our theory made for spheres in a magnetic theory should also apply to an ensemble of
randomly oriented non-spherical particles in a magnetic "eld, since the magnetic "eld direction is
the same for all the particles.

We have chosen the size distribution [17] and optical parameters of a reported experiment [18],
when no magnetic "eld is present, but in which all the matrix elements of F0 were measured and
found to be in good agreement with the theoretical evaluation from Eq. (31). For water, the
parameter =+2.4]10~6 for a magnetic "eld of 1 T. From Fig. 4, we can therefore expect
a modi"cation of the order of 2.4]10~6 in the region near backward scattering for
F1
31

(B)/F1
11

(B"0) when BK is directed along kK . The magneto-optical e!ects on polarization are
very small. Nevertheless, they may become signi"cant in multiple scattering, which usually tends to
depolarize completely the light.

5.1. Forward and backward directions

When no magnetic "eld is present, the situations for h"0 or h"p are similar because the
scattering plane is unde"ned in both cases. We also have H"0 by Eq. (36). The remaining
contribution is therefore only determined by the G-vector, and the "nal result reads for h"0,

Fh/0
"

BK ) kK
k2r2 A

0 0 0 !Im(z)

0 0 Re(z) 0

0 !Re(z) 0 0

!Im(z) 0 0 0 B (39)
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Fig. 4. Scattering matrix elements F1
31

(B)/F1
11

(B"0) and F1
41

(B)/F1
11

(B"0) of an ensemble of water droplets as
a function of scattering angle for BK directed along kK (top), and F1

11
(B)/F1

11
(B"0) and F1

12
(B)/F1

11
(B"0) for BK directed

along g( (bottom). The refractive index is 1.332, a lognormal size distribution has been used with r
%&&
"0.75 lm and

p
%&&
"0.45 and j"632.8 nm. The curve has been displayed for ="0.1.
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with z"S
1
(1)R

1
(1). For h"p,

Fh/p
"

BK )kK
k2r2 A

0 0 0 Im(z@)

0 0 !Re(z@) 0

0 !Re(z@) 0 0

!Im(z@) 0 0 0 B (40)

with z@"S
1
(!1)R

1
(!1).

The functions R
1
(1) and R

1
(!1) de"ned in Eqs. (17) and (18) are very similar to S

1
(1) and

S
1
(!1). Both F-matrices contain only two real-valued independent parameters as do the corre-

sponding ¹ matrices. For unpolarized incident light only the Stokes parameter<"F1
41

(B) of these
matrices is non-zero. In Fig. 4, all the curves are zero for h"0 and h"p except the one of
F1
41

(B)/F1
11

(B"0). In other words, unpolarized incident light will produce partially circularly
polarized light (the degree of circular polarization being precisely F1

41
(B)/F0

11
(B"0)) for BK directed

along kK in the forward and backward directions. This can be understood from the fact that the
e!ective index that one can de"ne from Eq. (25) su!ers from magneto-dichroism (i.e. di!erent
absorption for di!erent circular polarization).

The modi"ed reciprocity relation in the presence of a magnetic "eld was expressed for the
amplitude matrix in Eq. (9). For the F-matrix it implies exactly the di!erent signs in the matrix
elements of Eq. (40) with respect to Eq. (39).

6. Summary and outlook

We have shown that the theory developed for magneto-active Mie scatterers so far is consistent
with the former results concerning predictions of the light scattering by Rayleigh scatterers in
a magnetic "eld. Our perturbative theory provides quantitative predictions concerning the
Photonic Hall Ewect for one single Mie sphere, such as the scattering cross section, the dependence
on the size parameter or on the index of refraction.

Using the magneto-correction to the ¹-matrix we have derived the Stokes parameters for the
light scattered from a single sphere in a magnetic "eld. We have distinguished two main cases.
Either the magnetic "eld is perpendicular to the scattering plane and there will be corrections to
the usual non-zero Stokes parameters, or when the magnetic "eld is in the scattering plane, the
corrections "ll up the F-matrix elements which were previously zero. We have discussed the
particular cases of forward and backward scattering.

We hope that these results will be useful in comparing them to the situation in multiple
scattering. Even after many scattering events, we suspect that the presence of a magnetic "eld
prevents the Stokes parameters ;, < and Q to be zero. In single scattering, their order of
magnitude is controlled by the parameter ="<

0
Bj. In multiple scattering, however, this

parameter must be replaced by f<
0
BlH, where f is the volume fraction of the scatterers and lH the

transport mean free path, and -HA1. We expect to "nd more signi"cant e!ects in this case.
We thank Geert Rikken and Joop Hovenier for useful comments. We thank the referees for their

work, and in particular for mentioning the work of Kuz'min et al.
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Appendix A. Derivation of reciprocity and parity relations

In the indices for polarization in the ¹-matrix, the state of helicity p is to be referred to the
direction of the wave vector immediately close to it. In Eqs. (8) and (9), ¹

~kp,~k{p{ for instance really
means ¹

~kp(~k),~k{p{(~k{)
. To derive these equations, we start from Eq. (5) in which we change both

incoming and outcoming wave vectors into their opposite:

T1
~kp,~k{p{" +

J,M,j
(!M)[a

J,jYj
J,M

(!kK ) ) sp(~k)
(!k)YjH

J,M
(!kK @) ) sp{(~k{)

(!k@)], (41)

where a
J,j is a well-known coe$cient, sp(k) is the eigenfunction of the operator S ) k with eigenvalue

p(k) the helicity. S is a spin one operator acting on three-dimensional vectors. The summation is to
be performed for j"e,m only, which are associated with the two transverse components of the
given vector spherical harmonics. Yj

JM
(k) is a well-de"ned linear combination of YM

J,J
(k), YM

J,J~1
(k)

and YM
J,J`1

(k) that obeys [10]

Yj
JM

(k) ) k"0, j"e,m.

We now use the relations,

Ye
J,M

(!kK )"(!1)J`1Ye
J,M

(kK ),
Ym

J,M
(!kK )"(!1)JYm

J,M
(kK ).

(42)

The eigenfunctions sp(k) also change under parity since

sp(~k)
(!k)"!sp(k)(k).

Because of this additional minus sign, the parities of the vector spherical harmonics are in fact,

PYe
J,M

"(!1)JYe
J,M

,

PYm
J,M

"(!1)J`1Ym
J,M

.
(43)

The parity symmetry relation of Eq. (8) follows from the application of these relations into Eq. (41).
The proof of the reciprocity symmetry relation of Eq. (9) is similar, where now the following
relations are necessary:

YjH
J,M

"(!1)J`MYj
J,~M

(44)

for j"e, o,m and

sHp(k)(k)"s
~p(k)(k).

The change of sign of B is provided by the M factor in Eq. (41) as surmised.
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