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Abstract —

We analyze thermodynamic bounds on equilibrium fluctuations of an order pa-

rameter, which are analogous to relations, which have been derived recently in the context of
non-equilibrium fluctuations of currents. We discuss the case of global fluctuations when the or-
der parameter is measured in the full system of interest, and local fluctuations, when the order
parameter is evaluated only in a sub-part of the system. Using isometric fluctuation theorems, we
derive thermodynamic bounds on the fluctuations of the order parameter in both cases. These
bounds could be used to infer the value of the symmetry breaking field or the relative size of the
observed sub-system to the full system from local fluctuations.

Copyright © EPLA, 2016

Recently, a set of thermodynamic bounds have been
obtained, which have a linear-response form and express
a trade-off between the variance of current fluctuations
and the rate of entropy production [1,2]. These relations
contribute to the field of statistical kinetics and could rep-
resent important trade-offs in the design of living systems.
Following this work, these uncertainty bounds have been
derived rigorously from large deviation theory [3]. Spe-
cific bounds on current fluctuations have also been ob-
tained separately for the symmetric exclusion process and
for diffusive systems [4].

Dissipative systems break the time-reversal symmetry;
but the formalism of large deviation theory is general and
is also applicable to equilibrium fluctuations [5,6]. For
equilibrium fluctuations, other forms of symmetry break-
ing not related to time are known. For instance, an en-
semble of N Ising spins in a magnetic field is a classic
illustration of an equilibrium system with discrete sym-
metry breaking. In discussing this pedagogical exam-
ple [7], Goldenfeld derived a simple relation for the ratio of
the probability to observe a magnetization My, Pg(My)
with the probability to observe instead —M y:

PB(MN) = PB(—MN) e2ﬁB'MN. (1)
The similarity of eq. (1) with the Gallavotti-Cohen fluc-
tuation theorem has been briefly noticed in [8] and only

extensively studied in [9]. Inspired by these works and
by the discovery of fluctuation relations combining spa-
tial and time-reversal symmetries called isometric fluctu-
ation relations [10,11], one of us derived an extension of
eq. (1) for general symmetries described by group the-
ory [12], which was then illustrated on a number of classic
models of statistical physics [13].

In this paper, we derive analogs of the thermodynamic
uncertainty bounds for equilibrium systems with symme-
try breaking. Using eq. (1), we find under some restrictive
conditions to be detailed below, the following inequality
for the variance of M y:

Var(MN) kBT (2)
(My) = B’
where we denote the projection of My along B as My.
In terms of the magnetization density m = My /N, this
relation is equivalent to Var(m)/(m) < kgT/BN.
We will also prove a different inequality, which instead

holds more generally for any system of classical spins (Ising
or Heisenberg) and arbitrary couplings and reads:

(My) — B
A remarkable feature of the inequalities of egs. (2), (3) is

that they hold beyond the linear response regime of small
B, but become saturated when B — 0 [7].
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The outline of this paper is as follows: after providing
an equivalent form of eq. (2), we consider some simple
cases with one or two spins, then we prove eq. (3) for an
ensemble of classical Heisenberg spins. The rest of the
paper investigates the validity of eq. (2) for large systems
either using a global or a local order parameter.

For a finite number of spins, the magnetic susceptibility
xn = d(My)/dB satisfies the fluctuation-response rela-
tion xn = SVar(My) for any finite value of the magnetic
field [14]. Thus, the inequality of eq. (2) is equivalent to

(Mn)
XN < g (4)

It is reasonable that such a relation should hold inde-
pendently of the temperature because it holds at least
near B = 0 (where the inequality is saturated) and near
B — oo. Indeed, in the latter case, the susceptibility van-
ishes due to the saturation of the magnetization, and the
right-hand side of eq. (4) also vanishes because the aver-
age magnetization is bounded and B — co. Whether the
inequality should hold also in the intermediate range of
values of B is the real question.

In order to investigate this, let us consider a simple case
namely that of of a single Ising spin ¢ = £1 at temper-
ature T in a magnetic field B > 0. Using the canon-
ical distribution: p(c) = €87/Z, with Z the partition
function, it is straightforward to show that (o?) = 1 and
(o) = tanh(4B). Our inequalities eq. (3) and eq. (2) are
indeed verified since

(0?) kT
I coth(8B) > %7 (5)
and
(0%) —(0)?> 1—tanh(8B)* _ kT (©)
(o) ~ tanh(3B) ~ B’

Now, let us consider two such Ising spins o7 and o5
interacting with a coupling constant J again at tempera-
ture 7" and in a magnetic field B > 0. Naturally, we are
interested in the fluctuations of the total magnetization,
My = 01 + 02. A straightforward calculation gives

(M2) kgT
< M; = 2coth(23B) > ,

(7)

which confirms eq. (3) for N = 2. Now,

Var(My)
(Ma)

_ 2 (exp(283J) + cosh(24B))
sinh(28B)(exp(24J) cosh(26B) + 1)

(®)

By maximizing the function on the right-hand side of this
equation over J with J > 0, one finds that the maxi-
mum is reached for J = 0. Therefore, Var(Ms)/(Mz) <
2/sinh(20B) < kT /B, which confirms eq. (2) for N =2
in that case. However, note that if we allow antiferromag-
netic couplings (J < 0), eq. (2) can be violated in some
range of values of B.

xn for 2 spins with J =1

xw for 2 spins with J = —1 ||
-~ xnv — (My)/Bfor J =1
- xv— (My)/Bfor J = -1

xn, xy — (My)/B

0 1 1

2 3
Magnetization field B

Fig. 1: (Colour online) Magnetic susceptibility xn (respec-
tively, xv — (Mn)/B) as a function of the magnetic field B for
two spins with ferromagnetic (J = 1) as red solid line (respec-
tively, dashed) or with antiferromagnetic interaction (J = —1)
as green solid line (respectively, dashed).

In order to understand this point, we plot in fig. 1, the
magnetic susceptibility xn and the quantity xy—(My)/B
for two spins with ferromagnetic or antiferromagnetic cou-
pling. In the case of two spins with ferromagnetic cou-
pling, xn is a monotonously decreasing function of the
magnetic field B on an interval of the form [0, co], and
eq. (4) holds. In contrast, for antiferromagnetic coupling,
XN~ is non-monotonous and eq. (4) is violated in a cer-
tain range of magnetic field. We shall come back to this
interesting observation later.

We are now in position to generalize these results fur-
ther. Let us consider an arbitrary ensemble of N classical
spins o = {o;}Y, taking discrete or continuous values
such that o; € R? and ||o;|| = 1 [13]. The Hamiltonian of
the system is assumed to be of the form

Hy(o;B) = Hy(o;0) — B - Mp(0o). 9)

By a simple calculation (see the Supplementary Material
Supplementarymaterial.pdf for details), one obtains

(M%) fMN>0 dMpyM% cosh(B - My) Po(Mn)
<MN> fMN>OdMNMN Sinh(ﬁB-MN) Po(MN)'
(10)
Now, we use the inequality tanh(z) < x for > 0, which is
equivalent to sinh(z) < z cosh(z). By reporting the latter
inequality into the denominator, one obtains

(M)
(Mn

fMN>0 dMy M3 cosh(BBMy) Po(My)
dMBBM3, cosh(BBMpy) Po(My)’
(11)

After simplifying the right-hand side, we obtain eq. (3)
which is thus proven for any ensemble of classical
spins with arbitrary couplings, as long as the system’s
Hamiltonian is given by eq. (9).

This simple derivation does not work for eq. (2), which
is unfortunate because eq. (2) is more informative than
eq. (3) —especially considering the large B limit— and

) S0
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Fig. 2: (Colour online) Large deviation function ®g(m) and its
linear-response approximation ®r(m) for the global fluctua-
tions of the magnetization density m in the Curie-Weiss model
for a temperature T = 0.8 (in the ferromagnetic phase) and
a magnetic field B = 0.01. The two functions are tangent at
the points +m™ the locations of which are shown by the two
vertical dashed lines.

is a closer analog to the nonequilibrium uncertainty rela-
tion [1-3]. For this reason, we focus below on eq. (2).

Let us consider a large number of spins N, so that we
can use the large deviation function [5,6]:

Pe(My) ~ ¢~ N®B(m), (12)
Let us introduce the function
m— m*)?B - m*
&1 p(m) = pl2 =) (13)

2(m*)? ’

where m* is the most probable value of the magnetiza-
tion which is such that ®g(m*) = ®g(m*) = 0. This
index LR in ®yp indicates that this is a linear response
regime with respect to B [3]. Using the fluctuation theo-
rem of eq. (1), it is easy to verify that ®(m) and @ z(m)
take the same value and their derivatives are equal at the
two symmetrically placed points +m*. To illustrate this
geometrically, the two functions ®g(m) and ®1z(m) are
shown in fig. 2, for the particular case of the mean-field
Curie-Weiss model in the ferromagnetic phase. In this
case, note the concavity of &g (m) in the coexistence re-
gion —m* < m < m*. In contrast, this region becomes
flat for the 2D Ising model in the limit B — 0 [6].

Now the variance of the order parameter is ®%(m*) =
1/(NVar(m)), and (m) = m*, because m* is unique for
large enough N. Thus, eq. (2) holds if

B

@Il * >
B(m*) > m*

; (14)

where the prime denotes the gradient component in the
direction of B. Now, since @g(m) = &g(m) — $o(m*) —
OB - (m—m®*) [13], one has Pz (m*) = ¢((m*) — B =0
and ®%(m) = & (m). Thus, the inequality eq. (14) is
implied by the positiveness of the function

h(m) = f(m) — &4(m)/m, (15)

which can not depend on the value of the magnetic field B.
Further, ®((m) = —®((—m) by symmetry and ®((0) = 0.
Now, when ®{(m) is convex for m > 0 and concave for
m < 0, h(m) is positive.

In other words, we must have basically ®{'(m) > 0
for m > 0. Now, it is possible to relate this condi-
tion to the one found in our earlier study of the two
spins. Indeed, since ®((m*) = B, by taking a derivative
with respect to B, one obtains xyy = GN/®j(m*). By
taking a further derivative with respect to B, one finds
dxn/dB = —Bx Oy (m®)/[@f(m")]?. Further, yy > 0
by the fluctuation-response relation. Therefore, the con-
dition ®{’(m) > 0 is equivalent to the condition that the
susceptibility be a monotonously decreasing function of B
on the interval B > 0, which is the condition found ear-
lier in our study of the two spins case. To summarize,
the same condition must be met for eq. (14) and therefore
eq. (2) to hold, both at the level of two spins or with a
large number of them.

As an illustration, we can consider the Curie-Weiss
model with Ising spins. The large deviation function of
that model is [9]

D (m) = I(m) — 50Jm* — (Bm — Gf(B).  (16)
where f(B) is the Helmholtz free energy per spin and I(m)
is the classic entropy function
_ 1+m1n1+m+ 1—mln1—m
2 2 2 2
The most probable value of the magnetization, m*(B)
given the magnetic field B, satisfies the relation
O (m*) = 0, which leads to the well-known self-consistent
equation m* = tanh(GJm* + 3B). The function ®g(m)
is shown in fig. 2 in the ferromagnetic phase. Note that
the region [—m*, m*] defines the coexistence region, where
®p(m) is concave.

The function h(m) introduced in eq. (15) is

I(m)

(17)

I tanh ™' (m) '

hlm) = 1—m? m

(18)

Since it is of the form f’(m) — f(m)/m, with f is convex
for m > 0 and concave for m < 0, it follows that h(m)
is indeed positive. From the positiveness of h(m), the
inequality of eq. (14) holds, which then implies the bound
for the fluctuations of the global order parameter given
by eq. (2).

For the case of the 2D Ising model, we resort to numeri-
cal simulations since we are not able to check directly this
condition on the function h(m). The results are shown in
fig. 3. In order to test this, the difference between the left-
hand side and the right-hand side in eq. (2) is plotted as
a function of B, so that all the points should be below the
red line y = 0 according to the inequality. The errorbars
have been estimated using the method of ref. [15]. These
errorbars increase rapidly as B — 0 in a system size de-
pendent manner due to the singularity in the derivative

60007-p3
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Fig. 3: (Colour online) Difference between the left- and right-
hand side of eq. (2) for the 2D-Ising model as a function of the
magnetic field B, for two sizes N = 100 and N = 400. The
temperature is 7' = 3.0 (paramagnetic phase) in the upper
figure and T = 2.2 (ferromagnetic phase) in the lower figure.

of the free energy F(B) at B = 0. We confirm that the
bound holds for the paramagnetic phase (upper figure) as
well as for the ferromagnetic phase (lower figure). It is
more tight in the former case than in the latter, since the
fluctuations are Gaussian in the former case. This analyt-
ical and numerical study of the thermodynamic bounds of
eqs. (2), (3) represents our first main result.

We now investigate how such bounds are modified when
we do not have access to the global order parameter, but
rather to a coarse-grained or local one. Since the bounds
are related to the fluctuation theorem, we need to general-
ize eq. (1) for such a case. A similar situation arises out of
equilibrium due to coarse-graining [16-21]. Understand-
ing how to extract relevant information in such cases is
rather pertinent experimentally even at equilibrium since
local measurements are often the only choice, in the fre-
quent case that the system is just too big to be analyzed
globally.

In order to study a local version of eq. (1), we consider
a subset of the IV spins containing n < N spins only,
A = {0}, with magnetization M, (o) = Y1, o; as
shown in fig. 4. The remaining spins A = {o;}}\, play
the role of an “environment” for the spins of A. This
environment has a magnetization M, (o) = 3>V o, so

i=n

that My = M,, + M,,. The local equivalent of eq. (1) is
Pg(M,) = Pg(—M,,)e/#BMatTe(Mu) — (19)
We have introduced the function

I's(M,) = kpTln(e 2/BM-

- Mn>B7

kBTln/e—QﬁB'mProb(Mn| — M,,)d*M,,,
(20)

where Eob(ﬁ“ —M,,) denotes the conditional probabil-
ity of M,, given a magnetization —IM,, for the sub-part.
Thus, I'g(M,,) is a correction factor which quantifies

=

Fig. 4: (Colour online) Sketch of the magnetic system with a
central square region A representing the observation window.
Spins in the complementary region A belonging to the blue
area are strongly coupled to that of A.

YL
- eeana
» e ens»
@D ofae
YOIEX 00
YY XL
e e an»

the failure of eq. (1) due to the reduction of available
information in the fluctuations. By construction, this fac-
tor must be an odd function of M,,, i.e.. I'g(—M,,) =
—T's(M,,).

In the case that all the spins of the sub-part and the
rest are independent, there are no correlations between
A and A, which means Prob(M,| — M,,) = Prob(M,,).
Using a Jarzynski like relation immediately deduced from
eq. (1) for the complementary part, one has I'g(M,) =
Qp(M,) = 0. Therefore, the breaking of the Fluctua-
tion relations eq. (1) arises entirely from the correlations
between the domains A and A.

In order simplify this problem, we further split the “en-
vironment”, namely A, into a subset of strongly correlated
spins (the blue area in fig. 4), and the rest of the spins,
which are less correlated [18]. This can be written as

M, = a, M, + &,, (21)
where we require &, to be uncorrelated with M,,. In par-
ticular, this form should hold above T,, where the correla-
tion length is small and all the spins of A are uncorrelated
with that of A except for those at the interface between
both domains.

Since &, is uncorrelated with M,,, «,, equals the nor-

malized co-variance between M,, and M,,:

(MZ) (M) (22)

Ay =

Then, using eq. (20) and eq. (21), one finds a linear cor-
rection I'g(M,,) = 2a,, M, - B. The asymmetry function
Y, defined by

Ym: 3
26Bn " Pg(—m)

(23)
is a straight line of slope one for the global order parameter
due to eq. (1) but becomes a straight line of slope 1+ a,
for the local order parameter. When «,, does not depend
on the magnetization, the change of slope can be described
by the inverse effective temperature S = 5(1 + o) or
by an effective magnetic field, similarly to the nonequi-

librium case [16]. Since the magnetization of A acts like
a field for A enhancing its magnetization, «, > 0 and

60007-p
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Fig. 5: (Colour online) (a) Asymmetry function Y;, vs. magne-
tization density m for the 2D Ising model in a magnetic field,
at a temperature T' = 3 (above T.) or T' = 2.2 (below T¢).
The order parameter is evaluated in a sub-part of n = 100
spins among a total of N = 400 spins, and the magnetic field
is B = 0.01. The critical temperature is 7. ~ 2.38 for this
system size. (b) Dependence of «a, wvs. the size of the sub-
part (symbols) for the same two temperatures. The solid line
shows the dependence which is expected as the critical point is
approached.

this effective temperature is smaller than 7. A straight
asymmetry function with a slope larger than one is indeed
found in fig. 5(a), when analyzing the fluctuations in a box
of n = 100 spins among a total of N = 400 spins at the
temperature 7' = 3.

As T — T.F, the correlation length increases until it be-
comes of the order of the size of the full system. Then, the
contribution of &, in eq. (21) should vanish on average, and
the average magnetization density is (m) = (M,)/n =
(M,,)/(N — n), which implies a,, ~ (N —n)/n. Away
from the critical point, a, also scales as 1/n but the pref-
actor does not have such a simple form. We have checked
numerically that indeed o, ~ (N — n)/n near the critical
point as shown in fig. 5(b). Using such a determination
of a,,, one could infer the relative size of the observation
window to the size of the large system. In contrast, be-
low the critical point, the asymmetry function of the local
order parameter, has a sigmoidal shape as shown in fig. 5
when the temperature is T' = 2.2. A similar shape is found
in the case of the mean-field Curie Weiss model which is
completely solvable analytically (see the Supplementary
Material Supplementarymaterial.pdf for details of the
derivation of the correction factor I'g(M,,) for this case.

Let us now finally go back to our initial topic of ther-
modynamic bounds of the type of eq. (2) but now for local
fluctuations of the order parameter. The relevant large
deviation function is defined as

Pa(M,,) ~ e~n¢B(m) (24)
for n sufficiently large. Below, we use the same notation
for the magnetization density m = M, /n. In view
of the modified fluctuation theorem of eq. (19), the

approximation
(m — m*)?2

¢rr(m) = BBY,,- Tom)?

(25)
is correct by construction close to m = m* and has the
expected value at m = —m™* but unlike ¢z may not have
the correct tangent at this point.

To see precisely when this property holds, we start with
an equivalent form of eq. (19), namely:

AT (nm)

¢B(m) — ¢p(-m) = -26B -m— ——,  (26)

with T'(nm) related to the asymmetry function Y, by

I'(nm)

Y, = .
m 2Bn

(27)

Using eq. (26) and the property ¢g(m*) = 0, one deduces
that

¢p(—m*) = —28B — BI'(nm*), (28)
while from eq. (25), one obtains
I'(nm*)
" p(—m*) = —28B — B———2. 29
¢ r(—m") B B oy (29)
Therefore, we see that ¢z(—m*) = ¢} z(—m*) if and
only if
I'(nm*)
I’ = —. 30
(nm?) = T (30)

From this and given that I'(0) = 0, this condition is sat-
isfied whenever i) m* — 0, which is for instance the case
when B — 0 and T' > T, ii) the size of the sub-part
goes to zero n — 0, or more generally iii) the asymme-
try function Y,, is a linear function of m of the form
Y = (1 + ay)m, where a, is the coefficient introduced
earlier. When one of these conditions hold, the function
¢ r approximates ¢g for all values of the magnetization,
because both functions are tangent at m = +m*.

In such a case, the previous derivation of the thermody-
namic bound applies directly in terms of the effective field
By = (14 o) B, so that the generalization of eq. (2) is

Var(M,,)
(M)

- kT

1
<F (31)

or Var(m)/(m)
density.

As a particular case, the result holds for the Curie-
Weiss model. Indeed, after a straightforward calculation,
the large deviation for the fluctuations of the local order
parameter defined in eq. (24) reads [13]
8J

_ _ P e
I(m) — Bm 5 N -

+Bf(B+ Jnm/N) (% - 1) .

< kpT/nB.y for the magnetization

_ NBJ(B)

¢B(m) =
(32)

This expression allows to compare the large deviation
function ¢g(m) and its linear-response approximation

60007-p5
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Fig. 6: (Colour online) Difference between the left- and right-
hand side of eq. (31) as a function of B confirming the bound
for local fluctuations for the case of the 2D-Ising model at a
temperature 7' = 3 (in the paramagnetic phase) for two sizes
of the sub-part n = 100 and n = 25. The values of effective
magnetic field have been evaluated using the a,, of fig. 5.

¢rr(m) for various size ratios of the sub-part to the full
system. For general values of the size ratio and within
the ferromagnetic phase, we have checked that ¢ g is in-
deed not tangent at the point m = —m* although both
functions ¢rr(m) and ¢p(m) take the same value there.
When considering smaller size ratios of the sub-part to
the full system or within the paramagnetic phase, the two
curves become tangent at m = —m™*. In such conditions,
the bound on the fluctuations of the local fluctuations,
eq. (31) holds.

For the case of the 2D Ising model, we use again numer-
ical simulations. The results are shown in fig. 6, where the
difference between the left- and right-hand side of eq. (31)
is shown, in the paramagnetic phase with the appropriate
expression of Bg for two choices for the size of the sub-
part n = 25 or n = 100. This verification confirms the
bound for local fluctuations for this model, which repre-
sents our second main result.

To conclude, we have derived thermodynamic bounds
on equilibrium fluctuations of global and local order pa-
rameters. The bound for the fluctuations of a global order
parameter is analogous to the one derived recently out
of equilibrium [1-3]. In this formal analogy, the average
entropy production must replaced by the magnetic field.
This is expected since out of equilibrium, the entropy pro-
duction quantifies the degree of breaking of time-reversal
symmetry, while in equilibrium, the magnetic field is re-
sponsible for the breaking of the spatial discrete symmetry.

The two thermodynamic bounds contain the follow-
ing trade-offs: Out of equilibrium, the bound imposes
that reducing current fluctuations costs a minimal dissi-
pation [1-3]; in equilibrium, eq. (2) imposes that reducing
order parameter fluctuations can be achieved by increasing
the magnetic field (which therefore costs some energy).

In these two relations, fluctuations are measured by
their variance. If we choose instead to measure fluctuations
by the average of the square of the order parame-
ter, the picture which emerges from eq. (3) is rather

different: such a relation can describe situations where
fluctuations diverge and order can be destroyed provided
the average magnetization scales appropriatly with B. For
instance, near a critical point (My)r, ~ B'/9 [14], then
eq. (3) implies that (MZ)7, > kgTBY/°~1 which means
that (M%), diverges at B = 0 if § > 1.

Both in and out of equilibrium, the bounds do not fol-
low mainly from the fluctuation theorem, since additional
properties are needed. In the present equilibrium case, we
have seen an illustration of this with the example of the
two spins. There, we found that eq. (2) holds whenever
the susceptibility is a monotonously decreasing function
of the magnetic field. Considering instead a large ensem-
ble of spins, we recovered the same condition, in the form
of the positivity of third derivative of the large deviation
function of the magnetization in the zero-field model. Our
numerical study of the 2D Ising model confirms that the
inequality holds for this model at any temperature and
system size but requires ferromagnetic interactions.

Using the formalism of Fluctuation Theorems in the
presence of hidden degrees of freedom developed for the
non-equilibrium case [16], we have extended the uncer-
tainty bounds to local order parameters. Such bounds are
important because they can be tested experimentally more
easily than their large deviation counterparts (whether at
equilibrium or out of equilibrium). They could be used to
infer the value of the symmetry breaking field, the rela-
tive size of the observation window with respect to the full
system and possibly the nature of the interactions (ferro-
magnetic vs. antiferromagnetic) using only fluctuations of
the order parameter.

* % %
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