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Supplementary Material

Here, we prove isometric fluctuation relations for the
probability functional of the local order parameter or its
Fourier components and we use large-deviation theory

[1, 2] to evaluate the probability distributions of the order
parameter in the three-dimensional Curie-Weiss model of
ferromagnetism.

Appendix A: The isometric fluctuation relation for the magnetization density

The volume V of the magnet is partitioned into small cells {∆Vj}
c
j=1 where the magnetization density m(r) =

∑N
i=1 σi δ(r− ri) is coarse grained as

mj =
1

∆Vj

∫

∆Vj

drm(r). (A1)

Moreover, the external magnetic field B(r) is supposed to be piecewise constant in the cells: B(r) = Bj for r ∈ ∆Vj .
The joint probability distribution of the magnetization per spin in the cells is thus introduced as

PB ({mj}) ≡

〈

c
∏

j=1

δ

[

mj −
1

∆Vj

∫

∆Vj

drm(r)

]〉

B

, (A2)

where 〈·〉B denotes the statistical average over Gibbs’ canonical probability distribution of Hamiltonian H = H0+Hext

where H0 is invariant under rotations. The interaction with the external field can be written as

Hext = −

∫

V

drB(r) ·m(r) = −

c
∑

j=1

∫

∆Vj

drB(r) ·m(r) = −

c
∑

j=1

Bj ·mj ∆Vj , (A3)

so that the joint probability distribution takes the following form:

PB ({mj}) =
ZN (0)

ZN (B)
eβ

∑c
j=1

Bj ·mj ∆Vj P0 ({mj}) . (A4)

Since the Hamiltonian H0 is symmetric under the group G of rotations, we obtain the isometric fluctuation relation

PB ({mj}) = PB ({m′

j}) e
β
∑c

j=1
Bj ·(mj−m

′

j) ∆Vj , (A5)

where m
′

j = R
−1
g ·mj for g ∈ G, and ‖m′

j‖ = ‖mj‖.
In the limit where the cells of the partition are arbitrarily small, the joint probability distribution becomes the

probability functional of the magnetization density and the sum becomes an integral so that the isometric fluctuation
relation reads

PB[m(r)] = PB[m
′(r)] eβ

∫
V

drB(r)·[m(r)−m
′(r)] , (A6)

with m
′(r) = R

−1
g ·m(r) for g ∈ G, as announced.
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Appendix B: The Curie-Weiss model of ferromagnetism

In this three-dimensional model, the interaction between N Heisenberg spins σσσi = (sin θi cosφi, sin θi sinφi, cos θi)
is ruled by the Hamiltonian

HN (σσσ;B) = −
J

2N
MN (σσσ)2 −B ·MN (σσσ) (B1)

where

MN(σσσ) =

N
∑

i=1

σσσi (B2)

is the total magnetization, which is a priori distributed according to

CN (M) ≡

∫

dNσσσ

(4π)N
δ [M−MN(σσσ)] (B3)

with dNσσσ =
∏N

i=1 d cos θidφi. This distribution is normalized according to

∫

CN (M) dM = 1 (B4)

where dM = M2dMd cos θdφ in spherical coordinates.
We apply large-deviation theory [1, 2] in order to obtain the behavior of this distribution as

CN (Nm) = AN (m) e−NI(m) for N → ∞ (B5)

in terms of some rate function I(m) and a sub-exponential prefactor AN (m). Because of the rotational invariance
of CN (Nm), the rate function and the prefactor only depend on the modulus of the magnetization per spin m =
‖m‖ = ‖M‖/N . For the purpose of deducing I(m) and AN (m), we introduce the generating function of the statistical
moments of the magnetization:

C̃N (h) ≡
〈

eh·MN(σσσ)
〉

=

∫

dM eh·MCN (M). (B6)

Since the magnetization is defined as the sum (B2) over spins that are statistically independent according to the
distribution (B3), this generating function is given by

C̃N (h) = χ(h)N (B7)

with

χ(h) =

∫

dσσσ

4π
eh·σσσ =

sinhh

h
. (B8)

Now, Eq. (B5) is inserted into Eq. (B6) and the integral over M = Nm is carried out in spherical coordinates with
the method of steepest descent [3]. In this way, the generating function is obtained as

C̃N (h) ≃ AN (mh)
(2πN)3/2mh

h
√

I ′′(mh)
eN [hmh−I(mh)] for N → ∞ (B9)

in terms of the root mh of

h =
dI

dm
(mh) . (B10)

Equating (B7) to (B9), the rate function is thus determined as

I(m) = mhm − ln
sinhhm

hm
(B11)
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where hm is the root of

m =
d

dh
lnχ(hm) = L(hm) (B12)

in terms of the Langevin function L(h) = coth(h)− 1/h. Inversely, we have that

hm = L−1(m) = I ′(m), (B13)

hence

I(m) = mL−1(m)− ln
sinh

[

L−1(m)
]

L−1(m)
. (B14)

We notice that the rate function is equivalently given by the Legendre-Fenchel transform

I(m) = Maxh [mh− lnχ(h)] , (B15)

according to the Gärtner-Ellis theorem [1, 2]. Interestingly, there is another route to arrive at this result, which
amounts to optimize the free energy function mh − lnχ(h) with respect to an unknown probability density of the
order parameter ρ(m,Ω) in the solid angle Ω, rather than with respect to h. This is the essence of the variational
mean-field approach [4]. For the present case, we can implement this method by introducing the average of the
magnetization m by

〈m〉 =

∫

dΩm ρ(m,Ω), (B16)

where ρ(m,Ω) is a probability distribution, which also depends on the applied magnetic field and is yet to be
determined. Now, the quantity CN (M) introduced above, has the interpretation of the number of spin configurations
with the given magnetization M. Therefore it can only depend on M = ‖M‖ and is related to the rotational Shannon
entropy SN (Nm) of the single particle distribution ρ(m,Ω), by Boltzmann formula: CN = eSN/k, where

SN (Nm) = −Nk

∫

dΩ ρ(m,Ω) ln ρ(m,Ω). (B17)

It follows from this that a suitable mean-field free energy can be written as FMF[ρ(m,Ω)] = EN (N〈m〉;B)−TSN(Nm)
where the mean energy EN/N = −(J/2)〈m〉2−B·〈m〉 is expressed in terms of the average magnetization (B16). By its
extensivity, this free energy is of the formNfMF[ρ(m,Ω)]. From the equation obtained by imposing that the functional
derivative of fMF[ρ(m,Ω)] with respect to ρ(m,Ω) be zero, one obtains the optimal single particle distribution solution
of the variational problem, ρMF(m,Ω). The solution has the form ρMF(m,Ω) ∼ exp(h ·m) where h is the mean field
h = βJ〈m〉+ βB. This vector is directed along z, so that we can use h = h · ez and m = m · ez. Then, one obtains
from Eq. (B16) a self-consistent equation, which is m = L(h). Thus, in the notation introduced above h = hm. It
is then a simple matter, to insert this result into Eq. (B17), and to prove that SN (Nm) = −NkI(m) where I(m) is
the rate function of Eq. (B14). Thus, the rate function represents the rotational entropy, which is also the Shannon
entropy of the one-particle distribution, while the large-deviation function represents the free energy per spin for a
given value of m divided by β−1 = kT .
While the variational mean-field or the Gärtner-Ellis theorem leads to the same rate function as also obtained by

the explicit calculation via Eqs. (B2)-(B14), one advantage of the latter method is that one obtains the prefactor of
the large-deviation function which the other methods do not give. For the present example, one obtains:

AN (m) ≃
hm

√

I ′′(m)

(2πN)3/2 m
(B18)

with

I ′′(m) =
1

L′(hm)
=

(

1

h2
m

−
1

sinh2 hm

)

−1

. (B19)

Finally, the probability distribution function is obtained as

CN (Nm) ≃
L−1(m)

(2πN)3/2 m

[

1

L−1(m)2
−

1

sinh2 L−1(m)

]

−1/2

e−NI(m) for N → ∞ (B20)
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with the rate function (B14). The latter can be expanded in power series as

I(m) =
3

2
m2 +

9

20
m4 +

99

350
m6 +

1539

7000
m8 +

126117

673750
m10 +O(m12) , (B21)

which diverges at m = 1 in accordance with the fact that the magnetization is bounded as ‖M‖ = Nm ≤ N . We also
have that

CN (0) =

(

3

2πN

)3/2

, (B22)

since I ′′(0) = 3 and limm→0 hm/m = limm→0 I
′(m)/m = 3.

At finite temperature and in the presence of an external magnetic field, the probability distribution of the magne-
tization is thus given by

PB(M) =
1

ZN (B)
eNβ( J

2
m2+Bm cos θ) CN (Nm) (B23)

where θ is the angle between B and m = M/N .
For B = 0, the paramagnetic-ferromagnetic phase transition occurs at the critical value βcJ = 3, beyond which the

probability distribution has its maximum at a non-zero value of the magnetization.
Equations (B20) and (B23) are used to plot Figs. 1a-1b of the main text. These figures depict the probability density

pB(m) = N3PB(Nm) of the magnetization per spin. If B = (B, 0, 0), this density obeys the isometric fluctuation
relation

pB(m cos θ,m sin θ, 0) = pB(m, 0, 0) eNβBm(cos θ−1) (B24)

along the lines at constant values of m =
√

m2
x +m2

y in Figs. 1a-1b of the main text.
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FIG. 1. Generating function of the magnetization cumulants in the three-dimensional Curie-Weiss model for the magnetic field
B = (B, 0, 0) with B = 0.001, J = 1, and different temperatures across criticality. The plot depicts the scaling behavior of the
generating function close to its maximum at the symmetry point λ = βB. The difference ΓB(βB) − ΓB(λ) is rescaled by the
average magnetization 〈m〉B and βB − λ by 2βB.

The large-deviation function is defined as

ΦB(m) ≡ lim
N→∞

−
1

N
lnPB(Nm) (B25)

and its Legendre-Fenchel transform gives the cumulant generating function

ΓB(λλλ) = Minm [ΦB(m) + λλλ ·m] . (B26)
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Since ΦB(m) = Φ0(m)−βB ·m−βf(B)+βf(0) and Φ0(m) can be related to f(B) by a Legendre-Fenchel transform,
we find that ΓB(λλλ) = β

[

f(B− β−1λλλ)− f(B)
]

. Taking B = (B, 0, 0), m = (m, 0, 0), and λλλ = (λ, 0, 0), the cumulant
generating function presents a maximum at the symmetry point λ = βB, as shown in Fig. 2 of the main text. The
scaling behavior around this point is evidenced by plotting ΓB(βB) − ΓB(λ) versus βB − λ, as shown in Fig. 1. In
this log-log plot, the slope provides the scaling exponent x in the relation

ΓB(βB) − ΓB(λ) ∼ (βB − λ)x. (B27)

In the paramagnetic phase for kT > kTc = J/3, the generating function is analytic for λ ∈ [0, 2βB] and it presents a
smooth quadratic maximum at λ = βB where the scaling exponent is x = 2. Because of the analyticity, the average
magnetization per spin is vanishing in the absence of external field: 〈m〉0 = 0. However, in the ferromagnetic phase
for kT < kTc = J/3, the generating function has a discontinuity in its derivative at its maximum so that the scaling
exponent is now x = 1. This non-analyticity allows for a spontaneous magnetization 〈m〉0 6= 0 in the ferromagnetic
phase. At the critical point, the scaling behavior is intermediate with an exponent x = 4/3 in this mean-field model.
This value confirms the conjecture of the main text that this critical exponent should be equal to x = (δ + 1)/δ
where δ is the exponent between the average magnetization and the external field at the critical temperature Tc:
〈m〉B,Tc

∼ B1/δ [5]. Indeed, this exponent takes the value δ = 3 in mean-field models, so that x = 4/3 as here
observed.
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