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We derive a set of isometric fluctuation relations, which constrain the order parameter fluctuations in
finite-size systems at equilibrium and in the presence of a broken symmetry. These relations are exact and
should apply generally to many condensed-matter physics systems. Here, we establish these relations for
magnetic systems and nematic liquid crystals in a symmetry-breaking external field, and we illustrate them
on the Curie-Weiss and the XY models. Our relations also have implications for spontaneous symmetry
breaking, which are discussed.
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Away from equilibrium, the second law of thermody-
namics quantifies the breaking of the time-reversal
symmetry due to energy dissipation, as observed on
macroscales. Yet, the microscopic equations of motion
are fully reversible and this microreversibility has funda-
mental implications such as the Onsager reciprocal rela-
tions in regimes close to equilibrium, as well as the
so-called fluctuation relations, which are also valid further
away from equilibrium [1–7].
In this context, Hurtado et al. have uncovered a remark-

able extension, which they dubbed isometric fluctuation
relations, by considering the symmetry under both time
reversal and spatial rotations in nonequilibrium fluids [8].
These results hint at the possibility that all the fundamental
symmetries continue to manifest themselves in the fluctu-
ations, even if these symmetries are broken by external
constraints. This concerns not only systems driven away
from equilibrium, but also equilibrium systems described
by Gibbsian canonical distributions, as shown by one of us
for discrete symmetries such as spin reversal [9]. In this
regard, we may wonder whether such fluctuation relations
would hold for general broken symmetries in equilibrium
systems. The issue is of importance given the central
role played by symmetry-breaking phenomena in physics
[10,11]. A symmetry may be broken spontaneously if the
ground state has a lower symmetry than the Hamiltonian, or
explicitly if a perturbationH1 is added to a HamiltonianH0

where H1 is less symmetric than H0. In either case, do the
fluctuations of the order parameter leave a footprint of the
symmetry that is broken?
The purpose of the present Letter is to answer this

fundamental question in the affirmative by proving that, for
equilibrium systems, whenever a symmetry is broken by an
external field, the probability distribution of the fluctua-
tions obeys an isometric fluctuation relation. Remarkably,
this relation is exact already for finite systems. This result

established for magnetic systems and nematic liquid
crystals, is illustrated for the Curie-Weiss and XY models
of ferromagnetism. We then discuss implications of our
result for spontaneous symmetry breaking (SSB).
Let us consider a system composed of N Heisenberg

spins σ ¼ fσigNi¼1, where the individual spins take discrete
or continuous values such that σi ∈ Rd and ∥σi∥ ¼ 1. The
order parameter of this system is the magnetization
MNðσÞ ¼

P
N
i¼1 σi, and the Hamiltonian of the system is

assumed to be of the form HNðσ;BÞ ¼ HNðσ; 0Þ−
B ·MNðσÞ, where B is the magnetic field. Let us also
introduce the probability PBðMÞ that the magnetization
takes the valueM¼MNðσÞ as PBðMÞ¼hδ½M−MNðσÞ�iB,
where δð·Þ denotes the Dirac delta distribution and h·iB the
statistical average over Gibbs’ canonical measure at the
inverse temperature β [12]. First, we establish a general
identity between the distribution of the order parameter in
the field, PBðMÞ, and the same distribution in the absence
of the field, P0ðMÞ:

PBðMÞ ¼ 1

ZNðBÞ
X
σ
e−βHNðσ;0ÞþβB·MNðσÞδ½M −MNðσÞ�;

¼ 1

ZNðBÞ
eβB·M

X
σ
e−βHNðσ;0Þδ½M −MNðσÞ�;

¼ ZNð0Þ
ZNðBÞ

eβB·MP0ðMÞ; ð1Þ

where ZNðBÞ is the partition function. We notice that this
identity holds even if the Hamiltonian HNðσ; 0Þ has no
particular symmetry.
Now, we suppose that, in the absence of the field, the

Hamiltonian HNðσ; 0Þ is invariant under a symmetry group
G, which can be discrete or continuous. This means that
HNðσg; 0Þ ¼ HNðσ; 0Þ, where σg ¼ fRg · σigNi¼1, and Rg is
a representation of the member g of the group G such that
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j detRgj ¼ 1. The consequence is that the probability
distribution of the magnetization has this symmetry in
the absence of the magnetic field since summing over the
microstates σ or their symmetry transforms σg are equiv-
alent for every g ∈ G so that

P0ðMÞ ¼ 1

ZNð0Þ
X
σg

e−βHNðσg;0Þδ½M −MNðσgÞ�;

¼ 1

ZNð0Þ
X
σ
e−βHNðσ;0Þδ½M − Rg ·MNðσÞ�;

¼ P0ðR−1
g ·MÞ: ð2Þ

Combining Eqs. (1) and (2), one obtains the fluctuation
relation

PBðMÞ ¼ PBðM0ÞeβB·ðM−M0Þ; ð3Þ

with M0 ¼ R−1
g ·M for all g ∈ G. When Rg represents a

rotation, ∥M∥ ¼ ∥M0∥, hence the name isometric fluc-
tuation relation. This relation includes as a particular case
the fluctuation relation derived in Ref. [9] whenM0 ¼ −M.
In analogy with the nonequilibrium case, a corollary of this
relation can be obtained by introducing the Kullback-
Leibler (KL) divergence of the distributions PBðMÞ and
PBðM0Þ. The positivity of the KL divergence leads to the
second-law-like inequality

B · hMiB ≥ B · hM0iB; ð4Þ

where h·iB represents an average with respect to the
distribution PBðMÞ.
In Eq. (3), the distribution of the order parameter is

compared to the distribution of the rotated order parameter
in the same magnetic field. Another possibility is to fix the
order parameter and rotate the magnetic field. A similar
derivation leads to

PBðMÞ ¼ PB0 ðMÞeβðB−B0Þ·M; ð5Þ

where B0 ¼ RT
g · B for all g ∈ G, with T denoting the

transpose. We emphasize that the fluctuation relations (3)
and (5) hold exactly in finite systems.
The isometric fluctuation relation (3) also holds locally

for a spatially varying magnetization density mðrÞ and
magnetic field BðrÞ. To show this, it is needed to proceed
by coarse graining the magnetization density mðrÞ ¼P

N
i¼1 σiδðr − riÞ, where ri is the location of spin σi. By

adapting the derivation of Eq. (3), one then finds

PB½mðrÞ� ¼ PB½m0ðrÞ�eβ
R

drBðrÞ·½mðrÞ−m0ðrÞ�; ð6Þ

where PB½mðrÞ� is the probability functional of the
magnetization density mðrÞ and m0ðrÞ ¼ R−1

g ·mðrÞ (see
the Supplemental Material [13] for details).

In the infinite-system limit N → ∞, these fluctuation
relations have their counterparts in terms of large-deviation
functions [17–19]. By defining the magnetization per spin
m ¼ M=N, one can introduce a large-deviation function
ΦBðmÞ such that

PBðMÞ ¼ ANðmÞe−NΦBðmÞ; ð7Þ
where ANðmÞ is a prefactor which has a negligible
contribution to ΦBðmÞ in the limit N → ∞. As a result,
Eq. (3) implies the following symmetry relation for the
large-deviation function:

ΦBðmÞ − ΦBðm0Þ ¼ βB · ðm0 −mÞ: ð8Þ
It is important to appreciate that the function ΦBðmÞ
characterizes the equilibrium fluctuations of the order
parameter which are in general non-Gaussian. This function
can be expressed in terms of the Helmholtz free energy per
spin, fðBÞ ¼ −β−1 lnZNðBÞ=N, and of its Legendre trans-
form Φ0ðmÞ using Eqs. (1) and (7), as ΦBðmÞ ¼ Φ0ðmÞ −
βB ·m − βfðBÞ þ βfð0Þ [9]. Unlike the Helmholtz free
energy fðBÞ or its Legendre transform Φ0ðmÞ, the function
ΦBðmÞ depends on both thermodynamically conjugated
variables m and B.
We may also introduce the cumulant generating function

for the magnetization:

ΓBðλÞ≡ lim
N→∞

−
1

N
ln he−λ·MNðσÞiB; ð9Þ

which is the Legendre-Fenchel transform of the function
ΦBðmÞdefinedbyEq. (7).As a consequence of the isometric
fluctuation relation (3), the generating function (9) obeys the
symmetry relationΓBðλÞ ¼ ΓB½βB þ RT

g · ðλ − βBÞ� for all
g ∈ G. In the particular case of the inversion Rg ¼ −1, we
find that

ΓBðλÞ ¼ ΓBð2βB − λÞ: ð10Þ
The first cumulant, which is the average magnetization per
spin, is thus given by

hmiB ¼ ∂ΓB

∂λ ð0Þ ¼ −
∂ΓB

∂λ ð2βBÞ; ð11Þ

which has fundamental implications about SSB. Indeed, as
long as the cumulant generating function (9) remains
analytic in the variables λ (which is necessarily the case
in a finite system), the averagemagnetization has to vanish in
the absence of external field because hmi0 ¼ ∂λΓ0ð0Þ ¼
−∂λΓ0ð0Þ ¼ −hmi0 ¼ 0, as implied byEq. (11). Because of
the thermodynamic limit N → ∞, the generating function
may not be analytic, allowing a spontaneous magnetization
hmi0 ≠ 0 in the absence of external field, and thus the
possibility of SSB. In this case, inviewof the symmetry (10),
the simplest possible form of the generating function near
λ ¼ βB is
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jΓBðλÞ − ΓBðβBÞjTc
∼ ∥λ − βB∥1þ1=δ ð12Þ

at the critical temperature Tc, in order for the critical
magnetization to scale as ∥hmiB∥Tc

∼ ∥B∥1=δ with the
critical exponent δ ¼ 3 in the mean-field models, or δ ¼
15 in the two-dimensional Ising model [20–22]. The uni-
versal scaling behavior (12) establishes the nonanalyticity of
the generating function, which allows for the possibility of a
nonvanishing spontaneous magnetization in the thermody-
namic limit.
Now, we study a selection of illustrative examples of

magnetic systems. Let us start by considering N
Heisenberg spins with Curie-Weiss interaction. The
Hamiltonian of this system is

HNðσ;BÞ ¼ −
J
2N

MNðσÞ2 −B ·MNðσÞ: ð13Þ

The distribution of the order parameter is

PBðMÞ ¼ 1

ZNðBÞ
eðβJ=2NÞM2þβB·MCNðMÞ; ð14Þ

where the function CNðMÞ ¼ P
σδ½M −MNðσÞ� repre-

sents the number of microstates with a given magnetization
M. This number, which has to be rotationally invariant,
is related by CN ¼ eSN=k to the entropy function SNðMÞ
and Boltzmann constant k. Using large-deviation theory
[13,17,19], one explicitly obtains this entropy in the form
of SNðNmÞ ¼ −kNIðmÞ with m ¼ ∥m∥ and

IðmÞ ¼ mL−1ðmÞ − ln
sinh ½L−1ðmÞ�

L−1ðmÞ ; ð15Þ

where L−1 is the inverse of the Langevin function
LðxÞ ¼ cothðxÞ − 1=x, a result which also follows from
a standard mean-field approach [23]. Combining Eqs. (14)
and (15), the large-deviation function defined in Eq. (7) is
ΦBðmÞ ¼ IðmÞ − βJm2=2 − βB ·m. The prefactor ANðmÞ
of Eq. (7) is calculated in the Supplemental Material [13].
For this model, it is straightforward to check that this large-
deviation function satisfies the symmetry relation of
Eq. (8). In Fig. 1, we show the distribution PBðNmÞ as
a function of the components ðmx;myÞ of the magnetization
per spin. In the absence of external field, the probability
distribution is spherically symmetric, in which case spon-
taneous symmetry breaking occurs below the critical
temperature. Figure 2 depicts the cumulant generating
function (9) below and above the critical temperature. If
this function is analytic in the paramagnetic phase above
the critical temperature, it is no longer the case below the
critical temperature in the ferromagnetic phase where the
function presents a discontinuity at the symmetry point
λ ¼ βB in its derivatives with respect to the parameters λ.
As aforementioned, this nonanalyticity is at the origin of
the spontaneous magnetization in the ferromagnetic phase.

At the critical temperature, the generating function has the
universal scaling behavior (12) with δ ¼ 3, as it should for
this mean-field model [13].
We proceed by investigating the more complex XY

model, in light of our findings on isometric fluctuation
relations. In this much-studied model, topological defects
unbind above the Kosterlitz-Thouless transition temper-
ature TKT, where the order changes from quasi–long range
to short range [24]. The Hamiltonian of the XY model in an
external magnetic field B ¼ ðBx; ByÞ is given by

HNðθ;BÞ ¼ −J
X
hi;ji

cosðθi − θjÞ −B ·M; ð16Þ
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FIG. 1 (color online). Probability density pBðmÞ ¼
N3PBðNmÞ of the magnetization per spin m ¼ M=N ¼
ðmx;my; mz ¼ 0Þ for the three-dimensional Curie-Weiss model
in the magnetic field B ¼ ðB; 0; 0Þ with B ¼ 0.01, J ¼ 1, and
N ¼ 100 at the rescaled inverse temperatures (a) βJ ¼ 2.7 in the
paramagnetic phase and (b) βJ ¼ 3.3 in the ferromagnetic phase.
The lines depict the contours of ∥m∥ ¼ 0.1; 0.2;…; 1.0 where
the isometric fluctuation relation (3) holds [13].
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FIG. 2 (color online). Cumulant generating function (9) of the
magnetization in the three-dimensional Curie-Weiss model for
the magnetic field B ¼ ðB; 0; 0Þ with B ¼ 0.001, J ¼ 1, and
different temperatures across criticality. The generating function
is rescaled by the average magnetization hmiB in the direction of
the external field and plotted versus the rescaled parameter
λ=ð2βBÞ in the same direction λ ¼ ðλ; 0; 0Þ. The generating
function is computed by taking the Legendre-Fenchel transform
of the large-deviation function ΦBðmÞ introduced in Eq. (7) [13].
The isometric fluctuation relation (3) implies the symmetry
λ → 2βB − λ of the generating function according to Eq. (10).
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on a square lattice with L × L sites (i; j ¼ 1; 2;…; L) with
the magnetization M ¼ P

iðcos θi; sin θiÞ. In the absence
of an external field, the Hamiltonian is symmetric under the
orthogonal group O(2). In view of Eq. (1), the probability
distribution of the magnetization in the field can be
obtained from the same distribution in the absence of
the field P0ðMÞ. This quantity is itself related to the
probability distribution of the modulus of the magnetiza-
tion QðMÞ by P0ðMÞ ¼ QðMÞ=ð2πMÞ. A rich physics is
contained in the distribution QðMÞ [25]. In particular, a
calculation of this quantity below TKT has been shown to be
numerically very close to a Gumbel distribution [26].
In order to test the isometric fluctuation relations, we

have carried out Monte Carlo simulations as shown in
Fig. 3. Figure 3(a) represents the quantity QBðM; θÞ≡
2πMPBðMÞ versus the magnetization per spin m ¼ M=N
for different values of the angle θ, while Fig. 3(b) depicts
the probability distribution compensated by Boltzmann
weights: fBðM; θÞ≡QBðM; θÞe−βBM cos θ. The coinci-
dence of all the curves is evidence of the isometric
fluctuation relation. In addition, we show in the inset a
test of the relation using an equivalent form put forward by
Hurtado et al. [8]:

1

βBM
ln

QBðM; θÞ
QBðM; θ0Þ ¼ cos θ − cos θ0: ð17Þ

We have checked that the relation holds at temperatures
below TKT, as well as above.
Besides the Curie-Weiss and XY models, the isometric

fluctuation relation applies as well to other magnetic

systems. In particular, the relation can be established using
the transfer-matrix method in the case of a 1D classical
chain of Heisenberg spins [27].
Beyond magnetic systems, broken symmetry phases are

ubiquitous in soft matter systems, such as liquid crystals.
These systems are of great interest to study deformations
and orientation due to heterogeneities or to the application
of external fields. Below, we focus on nematic liquid
crystals which can be described by a tensorial order
parameter Q, or equivalently by a scalar order parameter
and a director n for uniaxial nematics [28]. Here, we
discuss the fluctuations of the tensorial order parameter in a
finite ensemble of nematogens.
Let us consider the following general Hamiltonian

HNðσ;BÞ ¼ HNðσ; 0Þ − BT ·QNðσÞ ·B; ð18Þ

with the following traceless tensorial order parameter:

QNðσÞ ¼
XN
i¼1

�
σi ⊗ σTi −

1

d
1
�
; ð19Þ

where now σi ∈ Rd is a unit vector directed along the
axis of the nematogens molecules. The distribution of this
tensor is PBðQÞ≡ hδ½Q −QNðσÞ�iB, where h·iB denotes
the statistical average over Gibbs’ canonical measure.
Using a similar derivation as before for a vectorial order
parameter, one obtains the following isometric fluctuation
relations for the distribution of the tensorial order
parameter Q:

PBðQÞ ¼ PBðQ0ÞeβBT ·ðQ−Q0Þ·B; ð20Þ

with Q0 ¼ R−1
g ·Q · R−1 T

g for all g ∈ G. We will report
elsewhere the application of this relation to a variant of
the Maier-Saupe model [29] and its extension to the
continuum description of long-wavelength fluctuations of
the director field nðrÞ [27].
In this Letter, we have obtained isometric fluctuation

relations for equilibrium systems. These relations are exact
and hold for finite as well as infinite systems. We have
shown that the fundamental symmetries of systems under-
going explicit or spontaneous symmetry breaking continue
remarkably to manifest themselves in the fluctuations of the
order parameter. The fluctuation relations take slightly
different forms depending on the particular interaction
energy of the system with the symmetry-breaking field, as
shown in the examples with magnetic or nematic systems.
We have also shown in Eq. (6) that the symmetry relation

holds not only for the global order parameter in a finite
system but also locally in spatially extended systems. A
potential application of this result for experiments could
consist in looking for an asymmetry in the local fluctua-
tions of an order parameter, and in extracting from this
asymmetry information about the symmetry-breaking field
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FIG. 3. XY model of two-dimensional magnetism on a square
lattice with L ¼ 10 and J ¼ 1 in the external magnetic field B ¼
ð0.1; 0Þ at the rescaled inverse temperature βJ ¼ 0.8 above the
critical temperature TKT. (a) The distribution QBðM; θÞ≡
2πMPBðMÞ versus the modulus of the magnetization per spin
M=N ¼ ∥M∥=N for different values of the angle θ separated by
Δθ ¼ π=6, with the top curve corresponding to the direction
along the magnetic field. (b) The distribution compensated by
Boltzmann weights fBðM; θÞ≡QBðM; θÞ expð−βBM cos θÞ
confirming the isometric fluctuation relation. Inset: Check of
the equality between the left- and right-hand sides of Eq. (17).
After a transitory run of 104 spin flips, the statistics is carried out
over 108 values of the magnetization, each one separated by 103

spin flips.
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BðrÞ. This would be the equilibrium analog of recent
experiments, in which the asymmetry in nonequilibrium
fluctuations have been exploited to estimate the entropy
production [30,31]. Another interesting application of this
framework, which we plan to pursue, concerns the analysis
of fluctuations in the critical regime, which are accessible
experimentally [32]. In conclusion, the isometric fluc-
tuation relations point towards a deep connection between
fluctuations and symmetries, beyond the distinction
between equilibrium and nonequilibrium. This deep link
not only sheds a new light on the classic topic of symmetry
breaking, but is also likely to be a useful tool for extracting
relevant information from fluctuations.
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