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Abstract
Motivated by a recent study on themetabolism of carbohydrates in bacteria, we study the kinetics and
thermodynamics of two classicmodels for reversible polymerization, one preserving the total polymer
concentration and the other one not. The chemical kinetics is described by rate equations following
themass-action law.We consider a closed system andnonequilibrium initial conditions and show
that the systemdynamically evolves towards equilibriumwhere a detailed balance is satisfied. The
entropy production during this process can be expressed as the time derivative of a Lyapunov function.
When the solvent is not included in the description and the dynamics conserves the total
concentration of polymer, the Lyapunov function can be expressed as a Kullback–Leibler divergence
between the nonequilibrium and the equilibriumpolymer length distribution. The same result holds
truewhen the solvent is explicitly included in the description and the solution is assumed dilute,
whether or not the total polymer concentration is conserved. Furthermore, in this case a consistent
nonequilibrium thermodynamic formulation can be established and the out-of-equilibrium
thermodynamic enthalpy, entropy and free energy can be identified. Such a framework is useful in
complementing standard kinetics studies with the dynamical evolution of thermodynamic quantities
during polymerization.

1. Introduction

The processes of aggregation and polymerization are ubiquitous in nature, for instance they are present in the
polymerization of proteins, the coagulation of blood, or even in the formation of stars. They are oftenmodeled
using the classic coagulation equation derived by Smoluchowsky [1, 2]. In the forties, Flory [3, 4] developed his
own approach for reactive polymers, with an emphasis on their thermodynamic properties and on theirmost
likely (equilibrium) size distribution. At this time, only irreversible polymerizationwas considered. The first
study of the kinetics of reversible polymerization combining aggregation and fragmentation processes was
carried out by Tobolsky et al [5].

In the seventies, reversible polymerization became a central topic in studies on the association of amino acids
into peptides and on the self-assembly of actin. The thermodynamics of assembly of these polymers forms the
topic of the now classical treaty byOosawa andAsakura [6]. At about the same time,Hillmademany
groundbreaking contributions to non-equilibrium statistical physics and thermodynamics, which allowed him
to describe not only the self-assembly of biopolymers like actin andmicrotubules, but also their free energy
transduction by biopolymers and complex chemical networks [7]. In the eighties, Cohen andBenedek [8]
revisited thework of Flory and Stockmayer, by showing that the Flory polymer length distribution is obtained
under the assumption of equal free energies of bond formation for all bonds of the same type. They also showed
that the kinetically evolving polymer distribution does not have the Flory form in general, and they analyzed the
irreversible kinetics of the sol–gel transition.
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More recently, the specific conditions for the kernels of aggregation and fragmentation, for which
equilibrium solutions of the Flory type exist have been analyzed [9–11].When these conditions are notmet,
reversible polymerizationmodels allow interesting nonequilibriumphase transitionswhich are beginning to be
investigated [12, 13].

The kinetic rate equations of reversible polymerization have broad applications. For instance, in studies on
the origin of life, these equations describe the appearance of long polymer chains in the primordial soup [14].
These equations are also used to describe the formation of protein clusters inmembranes [15–17] or the self-
assembly of carbohydrates (also called glycans) [18]. In the latter case, a very large repertoire of polymer
structures and enzymes is involved in the synthesis and degradation of these polymers. Since it is hardly possible
tomodel all the involved chemical reactions, the authors of this work, Kartal et al, introduced a statistical
approach to explain experiments which they performed usingmixtures of such polymers with the appropriate
enzymes. Their study underlines the importance of entropy as a driving force in the dynamics of these polymers:
under its action amonodisperse solution of such biopolymers, which is placed in a closed reactor with the
appropriate enzymes, typically leads to an exponential distribution of polymer length as an equilibrium
distribution, in agreement with themaximumentropy arguments used by Flory [3, 4].

This recent work of Kartal et al [18],motivated us to construct appropriate dynamics which converge over
long times towards such equilibriumdistributions. In order to complement this with an analysis of the time
evolution of thermodynamic quantities, we rely on stochastic thermodynamics (for general reviews see [19–
22]).While this recent branch of thermodynamics has been used extensively in the literature for chemical
reaction networks [23–30] and copolymerization processes [31] at the level of the stochastic chemicalmaster
equation, its application to the level ofmean-field kinetic rate equations ismore recent [32].

In this paper, we precisely use this level of description based onmean-field rate equations. Implicitly, we
assume reaction-limited polymerization. Naturally, if the reactions are too fast or themobility of the polymers is
too low, amean-field approachmay not be sufficient and diffusion processes should be accounted for [33].We
focus on twomainmodels of reversible polymerizationwhich reproduce the equilibriumdistributions found in
[18]: in thefirst one, there is only one conservation law (the total number ofmonomers) while in the second one,
there are two (the total number ofmonomers and of polymers).

The outline of the paper is as follows. In section 2, we study reversible polymerization using general rate
equations compatible with one conservation law (the total number ofmonomers). This is done first at the one-
fluid level for which there is no solvent, and then at the two-fluid level, for which there is a solvent. In section 3,
we apply this general framework to a specificmodel called the Stringmodel, inwhich the rates of aggregation
and fragmentation are constant. In section 4, we extend the previous case of reversible polymerizationwith a
single conservation law to the case where there are two conservation laws, namely the total number of
monomers and of polymers. In section 5, inspired by [18], we study two specific examples of reversible
polymerizationwith two (resp. three) conservation laws, namely the kinetics of glucanotransferases DPE1 (resp.
DPE2). For both cases, we construct the dynamics which converge towards the equilibriumdistributions found
in [18], andwe discuss their properties from the standpoint of nonequilibrium thermodynamics.

2. Reversible polymerizationwith one conservation law

Weconsider a reversible polymerization processmade of the following elementary reactions

n m n m[ ] [ ] [ ], (1)
k

k

nm

nm+ ⇌ +
−

+

where the forward and backward reaction rates, namely knm
− and knm

+ , are functions of the polymer lengths n and
m, which are strictly positive and symmetric under a permutation of n andm.We denote by cl the concentration
of polymers of length l. The evolution of this quantity is ruled by

( ) ( )c k c c k c k c c k c˙
1

2
, (2)l

n m l

nm n m nm n m

n

ln l n ln l n

1 1

∑ ∑= − − −
+ = >

+ −
+

=

∞
+ −

+

which preserves the total concentration ofmonomers (i.e. the concentration that onewould get if all the
polymers were broken intomonomers) M lc

l l1
∑=

=

∞
, but not the total concentration of polymers c c

l l1
∑=

=

∞
.

Therefore in this case, there is only one conservation law, that ofM, and one can assumeM= 1.Note also that
equation (2) generalizes the Becker–Döring equations which describe the dynamic evolution of clusters that
gain or lose only one unit at a time [34, 35]
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Assuming that the reaction (1) can be treated as elementary, the entropy production rate is given by [36, 37]

( )R
k c c k c

k c c

k c2
ln 0, (3)

n m

nm n m nm n m
nm n m

nm n m,

∑Σ = − ⩾+ −
+

+

−
+

whereR is the gas constant. The entropy production rate vanishes when the system reaches equilibrium, i.e.
when and onlywhen the detailed balance is satisfied:

k c c k c . (4)nm n m nm n m
eq eq eq=+ −

+

Using the inequality x xln 1⩽ − , which holds for all x 0> , one easily proves that the following quantity is
non-negative, convex and vanishes only at equilibrium

( )L R c
c

c
R c cln 0. (5)

l

l
l

l
eq

eq∑≡ − − ⩾

Indeed, by taking the time derivative of L(t) and using the definition of c, one obtains dL dt R ċ
l l∑=

c clog l l
eq. Nowusing (2), we obtain two terms. Thefirst term is

( ) ( )R
k c c k c

c

c

R
k c c k c

c

c2
ln

2
ln ,

l n m l

nm n m nm n m
l

l n m

nm n m nm n m
n m

n m
eq

,
eq∑ ∑ ∑− = −

+ =

+ −
+

+ −
+

+

+

while the second one is

( ) ( )R k c c k c
c

c

R
k c c k c

c c

c c
ln

2
ln .

l n

nl n l nl n l
l

l n m

nm n m nm n m
n m

n m
eq

,
eq eq∑∑ ∑− − = − −+ −

+
+ −

+

By adding these two contributions and using the detailed balance condition of (4) aswell as (3), onefinds that

R c
c

c t
L˙ ln

d

d
0. (6)

l

l
l

l
eq∑Σ = − = − ⩾

This proves that L is a Lyapunov function, i.e. a non-negative,monotonically decreasing function, which
vanishes at and only at equilibrium. The existence of such a function implies that the dynamics will always relax
to a unique equilibrium state. In [38], the authors show that for a chemical system containing afinite number of
homogeneous phases, aGibbs free energy function exists that isminimumat equilibrium. In the context of
reacting polymers, a similar free energy function has been derived in [9]. In view of the non-increasing property
of this function, the authors have coined the term ‘F-Theorem’.We discuss below its relation to themore usual
H theorem.

2.1.One-fluid version
Until now, ourmodel was exclusively expressed in terms of concentrations and could be used to study non-
chemical dynamics such as population dynamics.We now introduce the one-fluidmodel, where the solvent is
not described either by choice or because it is absent. Themolar fractions of the polymers of length l, with l 1⩾ ,
are x c cl l= while the Lyapunov function is

( )L Rc x
x

x
Rc

c

c
R c cln ln 0. (7)

l

l
l

l1
eq

eq

eq∑= + − − ⩾
⩾

It is important to note that this Lyapunov function is in general distinct from the relative entropy orKullback-
Leibler divergence between the distribution xl and xl

eq, which represents only the first term in equation (5). The
reason for this difference is that cl, contrary to xl, cannot always be interpreted as a probability since its norm is
not always conserved. The two quantities however become equivalent (i.e. they only differ by a constant) when
the total concentration of polymers c(t) is constant in time. If furthermore− x xln

l l l
eq∑ is constant in time (the

meaning of this assumptionwill become clear in the two-fluidmodel), then the negative of the Shannon entropy
(which is related to the classic notion of free energy ofmixing introduced in [3, 4] as explained in [39])

S R x xln , (8)
l

l lSh

1

∑= −
⩾

becomes a Lyapunov function and (6) reduces to the famous Boltzmann ‘H theorem’.

2.2. Two-fluid version
In order tomake contact with thermodynamics, we now introduce the two-fluidmodel which includes the
solvent explicitly in the list of chemical species. Then, themolar fraction of the polymer of length l becomes
y t c t C t( ) ( ) ( )l l= , which importantly is nowdefinedwith respect to the total concentration of all species

including the (time-independent) solvent concentration c0 (water for instance): C t c t( ) ( )
l l0

∑= =⩾ c t c( ) 0+ ,
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where c t c t( ) ( )
l l1

∑= ⩾ . If there is no solvent, c 00 = and one recovers themolar fraction of the previous

sectionwhichwas denoted by xl. In dilute solutions, since y0 is very close to one and the other yl aremuch
smaller,C(t) becomes almost constant: C c0≈ . The chemical potential of a polymer of length l in a dilute

solution is defined by RT ylnl l l
0μ μ= + , where h Tsl l l

0 0 0μ = − is the standard reference chemical potential

and hl
0 and s0l are the standard enthalpy and entropy, respectively.We restrict ourselves here to ideal solutions,

and by this we assume that this formof chemical potential applies not only to the polymers (l 0≠ ) but also to the
solvent. An interesting study of the effect of non-ideality on the time evolution thermodynamic quantities
during reversible polymerization can be found in [40].

Let us define the intensive enthalpy function as

H y h , (9)
l

l l

0

0∑=
⩾

and the entropy function of this two-fluidmodel as

( )S y s R yln . (10)
l

l l l
0

0∑= −
⩾

Their extensive counterparts are CH = and CS = . In equation (10), the first termproportional to sl
0

therefore represents the entropic contribution due to the disorder in the internal degrees of freedomof each
polymer, while the second term represents the nonequilibrium entropy in the distribution of the variables yl
[26]. Let us introduce the intensive free enthalpy

G H TS y , (11)
l

l l
0

∑ μ= − =
⩾

wherewe use the definition of the chemical potential in the last equality, and its extensive counterpart CG = .
Since the change of chemical potential associatedwith each reactionmust vanish at equilibrium, i.e.

0n m n mΔμ μ μ μ= − − =+ , using the definition of the chemical potential, wefind that

( )RT
y

y y
ln . (12)n m

n m
n m n m

eq

eq eq
0 0 0μ μ μ= − − −+
+

Combining (12)with (4), we find that the kinetic constantsmust satisfy the local detailed balance

( )RT
k C

k
ln , (13)nm

nm
n m n m

eq
0 0 0μ μ μ= − − −

+

− +

whereCeq denotes the equilibrium value taken byC.We note that since the chemical reactions do not involve a
solvent, we formally define the rate constantswith any zero subscript (norm) to be zero.Naturally, equation (13)
is not applicable in this case. The validity of equation (13) relies on twomain assumptions: thefirst one is that of
dilute solutions, while the second one is the ideality of the heat bath. The latter assumptionmeans that there are
no hidden degrees of freedomwhich can dissipate energy in the chemical reactions under consideration, which
implies in particular that these reactionsmust be elementary.

Using the definitions of the enthalpy and entropy functions, we find that

( )( )
t

k c c k c h h h
d

d

1

2
(14)

n m

nm n m nm n m n m n m

,

0 0 0 ∑= − − −+ −
+ +

and

( )
t

k c c k c s s s R
y y

y

d

d

1

2
ln . (15)

n m

nm n m nm n m n m n m
n m

n m,

0 0 0
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∑= − − − ++ −

+ +
+

As a result, onefinds that

( )
t

RT
k c c k c

y y y

y y y
RT c

y

y

d

d 2
ln ˙ ln , (16)

n m

nm n m nm n m
n m n m

n m n m l

l
l

l,

eq eq

eq eq

 ∑ ∑= − =+ −
+

+

+

wherewe used equation (12) to obtain the last equality. By including the solvent in the sum, as the term
corresponding to l=0,we have y 1

l l0
∑ =⩾ and therefore ẏ 0

l l0
∑ =⩾ ; thuswe can rewrite the above equation

as

t
RT

t
C y

y

y

d

d

d

d
ln . (17)

l
l

l

l0
eq

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 ∑=
⩾
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The entropy production (3), using (13) and the chemical potential definition,may bewritten as

( )T k c c k c RT
C

C

1

2
ln 0. (18)

n m

nm n m nm n m n m n m
,

eq
⎜ ⎟⎛
⎝

⎞
⎠∑Σ μ μ μ= − − − − − ⩾+ −

+ +

Using equations (14) and (15), it can be rewritten as

( )T
t

T RTC
C

C
RT C C

d

d
ln 0. (19)

eq
eq⎡

⎣⎢
⎤
⎦⎥ Σ = − − − − − ⩾

Thefirst term is the heatflow, the second is the entropy change and the third and fourth terms represent a
contribution due to the change in the total concentration. It is important to note that within the two-fluidmodel
with ideal solutions, sinceC(t) is essentially constant, these latter two contributions are negligible. Neglecting
these terms, the entropy production can be expressed as the change in free energywhich is also equal to a change
inKulback–Leibler divergence between the nonequilibrium and the equilibriumpolymer distribution

T
t

RT
t

C y
y

y

d

d

d

d
ln 0. (20)

l
l

l

l0
eq

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 ∑Σ = − = − ⩾
⩾

Wefinally note that when all the polymerization reactions are neutral from a standard chemical potential
standpoint i.e. when n m n m

0 0 0μ μ μ= ++ for all n m, , one has

t
RT

t
c y RT

t
C y y

d

d

d

d
ln

d

d
ln , (21)

l

l l
l

l l
0 0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 ∑ ∑= =
⩾ ⩾

which togetherwith equation (17) implies d C y y( ln ) 0t l l l
eq∑ = . SinceC can be assumed constant, the

Lyapunov function can be expressed only in terms of the Shannon entropy constructed from yl instead of the full
KL divergence. The dynamics can then be compared to a Boltzmann equationwhere the relaxation to
equilibrium is purely driven by themaximization of the Shannon entropy, as in theH-Theorem.

3. Application to the Stringmodel

As a simple realization of the reversible polymerization given by equation (1), we now consider the Stringmodel
which assumes constant rates of aggregation and fragmentation, independent of the length of the reacting
polymers. Following [13], we choose k 2nm =+ and k 2nm λ=− . From equation (2), the dynamics follows

c c c c c c l c˙ 2 2 ( 1) , (22)l

i j l

i j

j l

j l l∑ ∑λ λ= + − − −
+ = >

wherewe used the fact that l( 1)− combinations of i and j satisfy the relation i j l+ = . The detailed balance
condition defining equilibrium implies that c c ci j i j

eq eq eqλ= + , which leads to one parameter solutions of the form

cl
leq λβ= . Assuming the totalmonomer concentration to be M lc 1

l l∑= = , onefinds

1
2 4

, (23)
2

β λ λ λ= + − +

since the solution clmust decay at large l.

3.1.One-fluid version of the Stringmodel
The evolution of the length distribution in the Stringmodel can be obtained as a function of time by explicit
numerical integration. The results, starting from time t=0, are shown infigure 1.

The evolution equation (22) can be solved using an exponential ansatz of the form [13]

c t a t a t( ) (1 ( )) ( ), (24)l
l2 1= − −

which satisfies the conservation of the total number ofmonomers. The resulting differential equation for a(t) is
a a a˙ (1 )2 λ= − − . This equation can be easily solvedwith amonomer-only initial condition, cl l,1δ= , which
translates into the condition a (0) 0= . Unfortunately, the exponential ansatz cannot be used to describemore
general initial conditions, which cannot be accounted for by such a simple l-independent condition on a(0). For
themonomer-only initial condition, the following explicit solution is obtained:

{ }
{ }

a t
t

t
( )

1 exp ( )

exp ( )
(25)

α α

α α α α
=

− − −

− − −

+ −

+ − + −
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1
2 4

, (26)
2

α λ λ λ≡ + ± +±

where the two roots α− and α+ are related by 1α α =− + . At long times, the RHS of equation (25) tends towards

1 α α β= =+ − , so that the system approaches the equilibriumdistribution c c( ) (1 ) ( )l l
leq 2 1α α∞ = = − − −
− .

Using (25), one can obtain the explicit time evolution of the quantities of interest: the total polymer
concentration is time-dependent and reads

c t c t a t( ) ( ) 1 ( ). (27)
l

l

1

∑= = −
⩾

The Shannon entropy at the one-fluid level, and defined in equation (8), is given by

S t a t
a t

a t
a t( ) ln(1 ( ))

( )

1 ( )
ln ( ), (28)Sh = − − −

−

and reaches its equilibrium value S ( ) ln(1 ) ( (1 )lnSh α α α α∞ = − − − −− − − − for long times. Its rate of
change is

S a t a t
a t

a t
a t˙ ( )ln ( )

( )

(1 ( ))
ln ( ), (29)Sh 2

λ= − +
−

while the entropy production rate given by equation (6) is

( )R
a t a t

a t a t2 ln
1 ( )

1
ln

( )
(1 ( )) ( ) . (30)2

⎛
⎝⎜

⎞
⎠⎟Σ

α α
λ= −

−
− − −

− −

For completeness, we also discuss an approach using generating functions to study the Stringmodel without
resorting to the exponential ansatz which is restricted to themonomer-only initial condition. The full dynamics
remains nevertheless complex to solvewithin this approach. Introducing the generating function

z t c t z( , ) ( )
l l

l
1

∑χ = ⩾ and using equation (22), we obtain the dynamical equation

t
c c z z

z
2 2 , (31)

l j l

j
l2 ⎜ ⎟⎛

⎝
⎞
⎠∑∑χ χ χ λ λ χ χ∂

∂
= − + − ∂

∂
−

>

which can be simplified since for z 1∣ ∣ < , c z cz z( ) (1 )
l j l j

l∑ ∑ χ= − −> , so that

t
c

cz

z
z

z
2 2

1
. (32)2 ⎜ ⎟⎛

⎝
⎞
⎠

χ χ χ λ χ λ χ χ∂
∂

= − + −
−

− ∂
∂

−

The stationary solution of this differential equation, i.e. the solution of t 0χ∂ ∂ = has the following form:

z z t
c z

c z
( ) ( , )

(1 )
, (33)eq

eq

eq
χ χ λ

λ
≡ → ∞ =

− +

Figure 1.Evolution of the size distribution of polymers cl for the Stringmodel at different times t=0, t=0.2, t=0.5 and t=1 startingwith
amonodisperse distributionwith characteristic length l=4 at time t=0. The transition rates are constant and correspond to 1λ = . A
rapid convergence towards an exponential distribution can already be seen after a time t 1≃ .
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which satisfies t c c(1, )
l l1

eq∑χ → ∞ = =⩾ and t c c(1, ) ( )eq eqχ λ λ′ → ∞ = + . Since

M lc t(1, ) 1
l l1

∑ χ= = ′ → ∞ =⩾ , one recovers the equilibrium state obtained before, namely c 1eq β= − ,

with β given by equation (23). For an arbitraryM, one deduces from equation (33) that the equilibriumpolymer
length distribution is cl

leq λα= , where c c( )eq eqα λ= + .With our choice of initial condition of the form

c (0)l lMδ= , we have lc M
l l1

∑ =⩾ . Therefore, the equilibrium solution is

( )
c

c

M

c

M
1 . (34)l

l
eq

eq 2
eq 1⎛

⎝⎜
⎞
⎠⎟= −

−

Besides the stationary solution, it is also possible to obtain analytically the evolution of the total
concentration c(t). To show this, we take the limit z 1→ in equation (32). Using the l’Hospital rule, we obtain

c c M c˙ ( ). (35)2 λ= − + −

The explicit solution of equation (35) for c (0) 1= , as imposed by our choice of initial conditions of the form
c t( 0)l lMδ= = is

c t
t

( )
2

tanh
2

arctanh
2

2
. (36)⎜ ⎟⎛

⎝
⎞
⎠

Δ Δ λ
Δ

λ= + + −

where M( 4 )Δ λ λ= + . One can verify that equation (27) is recovered for themonomer only initial
condition,M=1, as expected. Furthermore, one recovers that c(t) tends towards c ( ) 2eq Δ λ= − as t → ∞,
which is the equilibrium concentration entering equations (33) and (34).

Incidentally, onemaywonder whether this behavior of the total concentration agrees with the predictions of
[6] regarding the notion of critical concentration in reversible polymerization. This is indeed the case: if one
evaluates the concentration ofmonomers c1 as a function ofMwith equation (34) and eliminating ceq using the
above expression, onefinds a function ofMwhich first increases rapidly and then reaches a plateau for M λ⩾ .
Naturally, this is not a sharp transition but rather a cross-over between two regimes. One can also look at the
average length of the polymer M ceq which increases significantly whenM becomes larger than λ. Both features
indicate that λ represents the critical concentration of thismodel [6].

As shown in the right part offigure 2, which has been obtained by explicit numerical integration, the
polymer concentration c(t) either decreases as a function of time for themonomer-only initial condition
(M = 1) or increases as a function of timewhen the initial condition corresponds to polymers of length 3 or
above (M 3⩾ ), while it remains constant in the case of dimers (M = 2). Intuitively, when the initial condition is
monomer-only (M = 1), there ismainly aggregation ofmonomers, so that the net concentrationmust decrease
with time.On the other hand, if the initial solution consists of long polymers (M 2> ), the probability of
fragmentation is higher than that of aggregation. As a result, the total concentrationmust increase with time. For
the dimer-only initial condition (M = 2), the probability of fragmentation is the same as that of aggregation, so
that the net concentration stays constant. As a result of this time dependence of c(t), we also see in the left part of
figure 2, that the Shannon entropy SSh does not always increasemonotonically as a function of time. It does so
for M 2⩽ but not for M 2> , where it presents an overshoot before reaching its equilibrium value. Such an
overshoot reveals that the Shannon entropy is not a Lyapunov function L as discussed in the previous section.

Figure 2. Left: Shannon entropy of the one-fluid version of the Stringmodel, SSh, as a function of time. The various curves represent
different initial conditions of the form c t( 0)l lMδ= = , for different totalmonomer concentrations M 1, 2, 3= and 4. Right: total
polymer concentration c(t) for the same initial conditions, as found by numerical integration of kinetic equations (solid line) or from
an exact expression using equation (36) (symbols). Both figures have been constructed using the same rates asfigure 1.
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3.2. Two-fluid version of the Stringmodel
One of themain differences between the two-fluid approach as comparedwith the previous onewith a single
fluid, is the existence of the local detailed balance condition, namely equation (13), which connects the rate
constants to the difference of standard chemical potentials. Furthermore, the specific formof the standard
chemical potentials enters in the equilibrium length distribution of the polymers and into the kinetics of the self-
assembly process.

For instance, if the polymers self-assemble linearly, the standard chemical potential of a polymer of length l,

l
0μ for l 1⩾ , may bewritten as l RT( 1)l

0μ α= − − , where RTα represents the bond energy between two
monomers [41]. For such amodel, a reaction is neutral from the point of view of chemical potentials, i.e. when

n m n m
0 0 0μ μ μ= ++ , when the polymer chain is sufficiently long so that l RTl

0μ α≃ − . From equation (13), it
follows that

( )RT
k C

k
RTln , (37)nm

nm
n m n m

eq
0 0 0μ μ μ α= − − − =

+

− +

which then implies a relation between the parameter λ defined earlier as the ratio of the rate constants (assumed
constant) and the parameter α, namely Ce eqλ = α− .

Sincewe introduced RTα as the bond energy between two consecutivemonomers, the simplest choice is to
assume that l

0μ leads to amolar enthalphy h l RT( 1)l
0 α= − − , and amolar entropy sl

0 which is assumed to be
negligible with respect to the enthalpy part due to bond formation.With this choice, onefinds the following
contribution of the polymer to the enthalpy:

H RT y l RT M c t( 1) ( ( )). (38)
l

l1

1

∑α α= − − = − −
⩾

As discussed previously, at the two-fluid level, this should be complemented by the contribution of the solvent to
obtain the enthalpyH. Similarly, the system entropy S, which contains both contributions, is

S R y yln . (39)
l

l l
0

∑= −
⩾

Infigure 3, we show this entropy function as a function of time for different initial conditions in units ofR.
At t=0, it equals approximately c c(1 ln )0 0+ , and it converges towards the equilibrium value of the entropy at
long times. For M 1> , the entropy increasesmonotonically whereas we see that it decreases forM=1. As in the
case of the one-fluidmodel, this decrease is not inconsistent since the entropy is not a Lyapunov function.We
note that the non-monotonicity thatwas present in the one-fluidmodel infigure 2 for M 1> is absent in the
two-fluid case.

If themonomerswere to assemble in the polymer in a different way, for instance in the formof disks instead
of linear chains, the standard chemical potentials would be different. In such a case, under similar assumptions
to those above, these chemical potentials would be of the form l l RT( )l

0μ α= − − , where α is again some

constant characteristic of themonomer–monomer andmonomer–solvent interaction [41]. The term in l
represents the contribution of the surface energy of the cluster of size l. This termnecessarily implies that the rate
constants knm

+ , knm
− must depend on n andm in order to satisfy the local detailed balance condition equation (13).

For such a case, the above derivation of a simple exponential for the equilibriumdistributionwould no longer
hold and both the equilibrium and the dynamics will bemore complex.

Figure 3. System entropy S for the two-fluid version of the Stringmodel as a function of time. The various curves represent different
initial conditions as in figure 2. The solvent concentration is c 10000 = and the transition rates are the same as infigure 1.
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4. Reversible polymerizationmodel with two conservation laws

As performed previously in section 2 for a reversible polymerizationmodel with only one conservation law,
namely the totalmonomer concentrationM, we now carry out a similar analysis for a different class ofmodels
with two conservation laws, namelyM and the total concentration of polymers or clusters, c. Clearly, the latter
quantity varies in time in the Stringmodel because some exchange processes in equation (1) produce clusters of
zero length for some n orm. In order to construct amodel which conserves the total number of clusters, one
needs to forbid such transitions. One simpleway to achieve this is to consider the kineticmodel

n m n m[ ] [ ] [ 1] [ 1], (40)
knm

+ → + + −

with the conditions n 1⩾ and m 2⩾ , where the latter inequality precisely prevents forbidden transitions. It is
easy to check that now the total concentration of the polymers, c c

l l∑= , as well as the totalmonomer

concentration M lc
l l∑= , remains constant in time. Another important observation is that thismodel is fully

reversible even if we do not indicate backward reactions explicitly. Indeed, it would be redundant to do so, since
backward reactions are already included in the forward reactions via an appropriate choice of the indices (n,m).
As performed in the previous section, we first present a general proof of convergence to equilibrium and thenwe
make contact with thermodynamics by introducing chemical potentials in dilute solutions.

The equation for the rate of change of concentration for a polymer size distribution is

c l k c c k c c k c c k c c˙ ( 2) , (41)l

n

l n n l nl n l

m

m l l m lm l m

1

1, 1 1 1

2

1, 1 1 1
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑ ∑Θ= − − + −

=

∞

− + + −
=

∞

− + + −

where theHeaviside function l( 2)Θ − equals 1 for l 2⩾ , and is zero otherwise.
Assuming again elementary reactions, the entropy production rateΣ is

R
k c c k c c

k c c

k c c2
ln 0, (42)

n m

nm n m m n n m
nm n m

m n n m1, 2

1, 1 1 1
1, 1 1 1

⎡⎣ ⎤⎦∑Σ = − ⩾
⩾ ⩾

− + + −
− + + −

which vanisheswhen the detailed balance condition holds, i.e. in equilibrium:

k c c k c c . (43)nm n m m n n m
eq eq

1, 1 1
eq

1
eq= − + + −

Following a procedure similar to that of section 2, one can show that, since c is constant, the relative entropy
between the distribution xl and xl

eq

L R c
c

c
Rc x

x

x
ln ln , (44)

l

l
l

l l

l
l

l
eq eq∑ ∑= =

is a Lyapunov function. Indeed, this quantity is convex, non-negative (by the inequality x xln 1< − ), and a
monotonically decreasing function vanishing at equilibrium. This latter property follows from

L

t
R c

c

c

d

d
˙ ln , (45)

l

l
l

l
eq∑=

which using equation (41) and the detailed balance condition of equation (43) gives

L

t
R k c c

k c c

k c c

d

d
ln . (46)

n l

nl n l
l n n l

nl n l1, 2

1, 1 1 1∑=
⩾ ⩾

− + + −

After symmetrizing this sum,we recover that L td d 0Σ = − ⩾ . This result is equivalent to equation (6) in the
presence of the additional conservation law ċ 0= . This systemwill therefore relax to a unique equilibrium state,
whereΣ vanishes.

We now turn to the two-fluid version of themodel. As in section 2.2, for the two-fluidsmodel themolar
fraction of a polymer of length l is y t c t C( ) ( )l l= , where C c c0= + is again a constant. The change in chemical
potential during the reaction (40) is given by

RT
y y

y y
ln . (47)

n m n m

n m n m
n m

n m

1 1

1
0

1
0 0 0 1 1

Δμ μ μ μ μ

μ μ μ μ

= + − −

= + − − +

+ −

+ −
+ −

Since at equilibrium 0Δμ = , using (43), we get

RT
y y

y y
RT

k

k
ln ln . (48)n m n m

n m

n m

nm

m n

0 0
1

0
1

0 1
eq

1
eq

eq eq
1, 1

μ μ μ μ+ − − = =+ −
+ −

− +

9

New J. Phys. 17 (2015) 085008 S Lahiri et al



The enthalpy change (9) can bewritten as

( )( )

( )( )

( )( )

t
C

t
y h c h

k c c k c c h h

k c c k c c h h

k c c k c c h h h h

d

d

d

d
˙

1

2
(49)

l
l l

l

l l

n m

m n n m nm n m n m

n m

nm n m m n m n m n

n m

nm n m m n n m m n n m

0 0

1, 2

1, 1 1 1
0 0

1, 2

1, 1 1 1 1
0

1
0

1, 2

1, 1 1 1 1
0

1
0 0 0

 ∑ ∑

∑

∑

∑

= =

= − +

= − +

= − + − −

⩾ ⩾
− + + −

⩾ ⩾
− + − + − +

⩾ ⩾
− + + − − +

and the entropy change (10) as

( ) ( )

( )

t
C

t
y s R y c s R c

k c c k c c s s s s R
y y

y y

d

d

d

d
ln ˙ ln

ln . (50)

l
l l l

l

l l l

n m

nm n m m n n m m n n m
n m

n m

0

0

0

0

1, 2

1, 1 1 1 1
0

1
0 0 0

1 1

⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟

 ∑ ∑

∑

= − = −

= − + − − +

⩾ ⩾

⩾ ⩾
− + + − − +

+ −

Since the entropy production can be rewritten as

( )( )

T RT k c c k c c
k c c

k c c

k c c k c c RT
y y

y y

k c c k c c

1

2
ln

1

2
ln

1

2
, (51)

n m

nm n m m n n m
nm n m

m n n m

n m

nm n m m n n m n m n m
n m

n m

n m

nm n m m n n m n m n m

1, 2

1, 1 1 1
1, 1 1 1

1, 2

1, 1 1 1
0 0

1
0

1
0

1 1

1, 2

1, 1 1 1 1 1

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑

∑

∑

Σ

μ μ μ μ

μ μ μ μ

= −

= − + − − +

= − + − −

⩾ ⩾
− + + −

− + + −

⩾ ⩾
− + + − + −

+ −

⩾ ⩾
− + + − + −

we can express it, as in (20), as

T
t

T
t

R
t

C y
y

y

L

t

d

d
( )

d

d

d

d
ln

d

d
0. (52)

l
l

l

l0
eq

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟   ∑Σ = − − = − = − = − ⩾

⩾

To summarize, we recover exactly the same results as in section 2, providedwe treat the total polymer
concentration c as a constant.

5. Application to the kinetics of glucanotransferasesDPE1 andDPE2

In this section, we consider the polymerization of glycans by two enzymes studied byKartal et al [18], namely the
glucanotransferases DPE1 andDPE2.We showhow to construct dynamicalmodels that are compatible with the
equilibriumpolymer length distributions that they found andwe study the dynamics of the Shannon entropy for
various initial conditions.

5.1. Kinetics of glucanotransferasesDPE1
Let us assume that the initial condition is not purelymade ofmonomers, since the solution of [18] becomes
singular in that limit (see equation (4) on P3 of [18]when the parameter DP 1in = for instance), and let us
construct an appropriate dynamics, choosing for simplicity constant rates knm κ= independent of n andm.

Using equation (41), we have for l 2⩾ ,

( )c

t
c c c c c c c c

d

d
2 , (53)l

l l l l l1 1 1 1 1
⎡⎣ ⎤⎦κ= + − − ++ − −

where the second term forbids transitions from l[1] [ 1]+ − to l[0] [ ]+ , while the last term forbids transitions
from l[1] [ ]+ to l[0] [ 1]+ + . Similarly, for c1, the evolution is

c

t
c c c c

d

d
( ) . (54)1

2 1 1
2⎡⎣ ⎤⎦κ= − +

It is straightforward to verify that these dynamics have two conservation laws, namely c c
l l1

∑ =⩾ and

lc M
l l1

∑ =⩾ .
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Introducing the generating function z t c t z( , ) ( )
l l

l
1

∑χ = ⩾ as in section 3 leads once again to a set of

equations for the dynamics which unfortunately cannot be solved analytically. However, it enables us tofind an
explicit solution for the equilibrium state:

z z t
c z

M Mz cz
( ) ( , ) , (55)eq

2

χ χ≡ → ∞ =
− +

whichmeans that the size distribution cl tends towards the following equilibriumdistribution for l 1⩾ :

c
c

M

c

M
1 , (56)l

l
eq

2 1
⎜ ⎟
⎛
⎝

⎞
⎠= −

−

where the total polymer concentration c is nowfixed by the initial condition.Wenote that the formof the
equilibriumdistribution is the same as that of the Stringmodel, but ceq in equation (34) is different from
c t( 0)= , whereas in the presentDPE1model they are the same.Our equilibrium solution (56) alsomatches that
of Kartal et al found for the polymerization of glycans by glucanotransferases DPE1 [18]. In this reference, the
authors use the polymer fractions xl, where l stands for the number of linkages in one cluster, rather than our
cluster distribution cl. They are related by x c cl l 1= + . Their conservation laws therefore read x 1

l l0
∑ =⩾ and

lx DP 1
l l0 ini∑ = −⩾ , whereDPini stands for the initial degree of polymerization. The latter is related to c by

DP M cini = , and the relation c M1 e− = β− matches equation (4) of Kartal et al.
The Shannon entropy, equation (8), at equilibrium and inR units, reads

S t
M

c

M

c

M

c

M

c
( ) ln 1 ln 1 , (57)Sh ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠→ ∞ = − − −

and has the standard formof amixing entropy. Note that the case of themonomer-only initial condition,
namely c M 1= = , is singular since no evolution is possible from this initial condition according to the present
dynamics. In this case, the Shannon entropy stays at zero, for all times t, whereas for other initial conditions it
increasesmonotonically as shown infigure 4.

5.2. Application to the kinetics of glucanotransferaseDPE2
As discussed byKartal et al [18], the enzymeDPE2 introduces an additional constraint with respect to the
enzymeDPE1. This additional constraint, which imposes a conservation of the total number ofmonomers and
dimers, reads in our notation c c pc1 2+ = , where p depends on the initial conserved total number ofmolecules
ofmaltose (corresponding to c2) and glucose (corresponding to c1). This additional constraint requires a
modification of the dynamical evolution equations.We propose the followingmodification:

c

t
c c c c c c c

d

d
( ) , (58)1

2 1 1
2

2
2

1 3
⎡⎣ ⎤⎦κ= − + − +

c

t

c

t

d

d

d

d
, (59)2 1= −

Figure 4. Left (resp. right): evolution of the Shannon entropy SSh for the one-fluidDPE1 (resp. DPE2)model with time for different
initial conditions. For both plots, the curves for M 1, 2, 3= and 4 correspond to initial conditions of the form c (0)l lMδ= . For the
DPE2 plot on the right,M=4.6 corresponds to an initial condition of the form c (0) 0.4 0.6l l l1 7δ δ= + . Note that whenM=1 for
DPE1 andM=1, 2 and 3 forDPE2, the Shannon entropy is zero since no evolution is possible from the initial condition.Wehave
chosen the constant rate 1κ = .
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c

t
c c c c c c c c

d

d
( ) , (60)3

4 3 2 4 1 3 3
2⎡⎣ ⎤⎦κ= − − + +

and for l 4⩾ ,

( )

( )

c

t
c c c c c c c c

c c c c c c

d

d
2

, (61)

l
l l l l l

l l

1 1 1 1 2 1

3 1 1 2 3

⎡⎣
⎤⎦

κ= + − − −

− + + +

+ − − +

−

As in the case ofDPE1, one can solve the stationary state of this equation bymeans of generating functions.
One obtains the following stationary generating function:

( )
z z t

c c cc z c c cc cc z

c z c z c c z
( ) ( , )

( 1)
. (62)eq

1 2 1
2

1 2 2 3

1 2 3

⎡⎣ ⎤⎦
χ χ≡ → ∞ =

− − − +

− − + −

One obtains from this c pc f(1 )1 = + and c c f fpc f(1 )2 1= = + with f c c c c c( ) ( )1 3 2= − − − , and for

l 3⩾ , c c fl
l

3
3= − with c p f c(1 )(1 )3 = − − . In otherwords, forDPE2, the equilibriumdistribution is again

exponential but only for length l 3⩾ , for l 3< the ratio of c c2 1 for instance does notmatch the ratio c cl l1+ for
l 3⩾ . The quantity f can bewritten in terms of p and c only as

M c p pc
f

f
c p

f
2 1

1

2 1
(1 )

1

1
, (63)⎜ ⎟⎛

⎝
⎞
⎠− − =

+
+ −

−

whichmatches equation (S57) obtained byKartal et al [18]. Therefore, the equilibrium state (62) is the same as
that discussed in this reference.

We have thus proposed dynamicalmodels reproducing the equilibriumdistribution of glycans in the
presence ofDPE1 orDPE2. The difference between both situations is thatDPE1 has two conservation laws,
namely that ofM and of c, whileDPE2 has a third one corresponding to that of p. As a result, there aremore
initial conditions of the type c (0)l lMδ= fromwhich no evolution is possible inDPE2 (M 3⩽ ) as compared to
DPE1.When this happens, S 0Sh = as shown infigure 4.While this forbids initial conditions of pure dimers for
instance, no such constraint exists formixtures. For instance, an initialmixture of 40:60 ofmaltose and
maltoheptaose considered in [18], corresponding to c (0) 0.4 0.6l l l1 7δ δ= + , has p=0.4 andM=4.6, and evolves
according toDPE2 dynamics as shown infigure 4, while an initial solution of puremaltose would not.

The limiting value of the Shannon entropy at long times can be obtained analytically as a function of f and p
for any initial conditions, but the expression is lengthy andwill not be given here.We have checked that it
reproduces the correct values of the plateaux infigure 4.

6. Conclusion

In this paper, we have considered two classicmodels for reversible polymerization in closed systems following
themass-action law, one preserving the total polymer concentration and the other one not. In both cases, the
entropy production can bewritten as the time derivative of a Lyapunov functionwhich guarantees the relaxation
of any initial condition to a unique equilibrium satisfying a detailed balance. As such, thesemodels could also
describe non-chemical systems undergoing aggregation–fragmentation dynamics.

When considering the polymerization dynamics in dilute solutions, we have shown that a consistent
nonequilibrium thermodynamics can be established for bothmodels.Wefind that entropy production is the
negative of the time derivative of the nonequilibrium free energy of the system, which is a Lyapunov function
and takes the formof aKullback–Leibler divergence between the nonequilibrium and the equilibrium
distribution of polymer length. A related result was found for the cyclical work performed by chemicalmachines
feeding on polymers in [42]. Similar relations expressing the entropy production as aKullback–Leibler
divergence between the nonequilibrium and equilibriumdistributions have also been found or used inmany
studies on stochastic thermodynamics [43–45].

As an application of reversible polymerizationmodels which do not preserve the total polymer
concentration, we have studied the Stringmodel. In thismodel, the rates of aggregation and fragmentation are
constants, which leads to an exponential equilibriumdistribution of polymer length. At the one-fluid level, we
have observed that the Shannon entropy is non-monotonic, which is allowed since it differs from the Lyapunov
function. At the two-fluid level where there is proper nonequilibrium thermodynamics, no such non-
monotonicity arises.

As an application of reversible polymerizationmodels preserving the total polymer concentration in
addition to the total number ofmonomers, we have studied two specific examples namedDPE1 orDPE2 after
[18].We have shown how to construct dynamics which converge over long times to the expected form andwe
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have discussed the time evolution of the Shannon entropy at the one-fluid level. In all cases, we have been able to
find the formof the stationary distribution by applying themethod of generating functions. Thismethod is
general and also applicable to situations where the stationary distribution is a nonequilibriumone [45].

Key assumptions of our approach are that we disregarded fluctuations, assumed homogeneous and ideal
solutions, considered closed systems, andwe treated the polymerization reactions as elementary. Each of these
assumptions could in principle be released and the resulting implications analyzed. Another interesting future
direction concerns the study of nonequilibrium thermodynamic devices or strategies which can be used to
engineer a particular polymer distribution (for instance amonodisperse one) starting from an initial
polydisperse one (an exponential one for instance).
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