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Abstract

Motivated by a recent study on the metabolism of carbohydrates in bacteria, we study the kinetics and
thermodynamics of two classic models for reversible polymerization, one preserving the total polymer
concentration and the other one not. The chemical kinetics is described by rate equations following
the mass-action law. We consider a closed system and nonequilibrium initial conditions and show
that the system dynamically evolves towards equilibrium where a detailed balance is satisfied. The
entropy production during this process can be expressed as the time derivative of a Lyapunov function.
When the solvent is not included in the description and the dynamics conserves the total
concentration of polymer, the Lyapunov function can be expressed as a Kullback—Leibler divergence
between the nonequilibrium and the equilibrium polymer length distribution. The same result holds
true when the solvent is explicitly included in the description and the solution is assumed dilute,
whether or not the total polymer concentration is conserved. Furthermore, in this case a consistent
nonequilibrium thermodynamic formulation can be established and the out-of-equilibrium
thermodynamic enthalpy, entropy and free energy can be identified. Such a framework is useful in
complementing standard kinetics studies with the dynamical evolution of thermodynamic quantities
during polymerization.

1. Introduction

The processes of aggregation and polymerization are ubiquitous in nature, for instance they are present in the
polymerization of proteins, the coagulation of blood, or even in the formation of stars. They are often modeled
using the classic coagulation equation derived by Smoluchowsky [1, 2]. In the forties, Flory [3, 4] developed his
own approach for reactive polymers, with an emphasis on their thermodynamic properties and on their most
likely (equilibrium) size distribution. At this time, only irreversible polymerization was considered. The first
study of the kinetics of reversible polymerization combining aggregation and fragmentation processes was
carried out by Tobolsky et al [5].

In the seventies, reversible polymerization became a central topic in studies on the association of amino acids
into peptides and on the self-assembly of actin. The thermodynamics of assembly of these polymers forms the
topic of the now classical treaty by Oosawa and Asakura [6]. At about the same time, Hill made many
groundbreaking contributions to non-equilibrium statistical physics and thermodynamics, which allowed him
to describe not only the self-assembly of biopolymers like actin and microtubules, but also their free energy
transduction by biopolymers and complex chemical networks [7]. In the eighties, Cohen and Benedek [8]
revisited the work of Flory and Stockmayer, by showing that the Flory polymer length distribution is obtained
under the assumption of equal free energies of bond formation for all bonds of the same type. They also showed
that the kinetically evolving polymer distribution does not have the Flory form in general, and they analyzed the
irreversible kinetics of the sol—gel transition.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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More recently, the specific conditions for the kernels of aggregation and fragmentation, for which
equilibrium solutions of the Flory type exist have been analyzed [9—11]. When these conditions are not met,
reversible polymerization models allow interesting nonequilibrium phase transitions which are beginning to be
investigated [12, 13].

The kinetic rate equations of reversible polymerization have broad applications. For instance, in studies on
the origin of life, these equations describe the appearance of long polymer chains in the primordial soup [14].
These equations are also used to describe the formation of protein clusters in membranes [15-17] or the self-
assembly of carbohydrates (also called glycans) [18]. In the latter case, a very large repertoire of polymer
structures and enzymes is involved in the synthesis and degradation of these polymers. Since it is hardly possible
to model all the involved chemical reactions, the authors of this work, Kartal et al, introduced a statistical
approach to explain experiments which they performed using mixtures of such polymers with the appropriate
enzymes. Their study underlines the importance of entropy as a driving force in the dynamics of these polymers:
under its action a monodisperse solution of such biopolymers, which is placed in a closed reactor with the
appropriate enzymes, typically leads to an exponential distribution of polymer length as an equilibrium
distribution, in agreement with the maximum entropy arguments used by Flory [3, 4].

This recent work of Kartal et al [ 18], motivated us to construct appropriate dynamics which converge over
long times towards such equilibrium distributions. In order to complement this with an analysis of the time
evolution of thermodynamic quantities, we rely on stochastic thermodynamics (for general reviews see [ 19—
22]). While this recent branch of thermodynamics has been used extensively in the literature for chemical
reaction networks [23-30] and copolymerization processes [31] at the level of the stochastic chemical master
equation, its application to the level of mean-field kinetic rate equations is more recent [32].

In this paper, we precisely use this level of description based on mean-field rate equations. Implicitly, we
assume reaction-limited polymerization. Naturally, if the reactions are too fast or the mobility of the polymers is
too low, a mean-field approach may not be sufficient and diffusion processes should be accounted for [33]. We
focus on two main models of reversible polymerization which reproduce the equilibrium distributions found in
[18]: in the first one, there is only one conservation law (the total number of monomers) while in the second one,
there are two (the total number of monomers and of polymers).

The outline of the paper is as follows. In section 2, we study reversible polymerization using general rate
equations compatible with one conservation law (the total number of monomers). This is done first at the one-
fluid level for which there is no solvent, and then at the two-fluid level, for which there is a solvent. In section 3,
we apply this general framework to a specific model called the String model, in which the rates of aggregation
and fragmentation are constant. In section 4, we extend the previous case of reversible polymerization with a
single conservation law to the case where there are two conservation laws, namely the total number of
monomers and of polymers. In section 5, inspired by [ 18], we study two specific examples of reversible
polymerization with two (resp. three) conservation laws, namely the kinetics of glucanotransferases DPE1 (resp.
DPE2). For both cases, we construct the dynamics which converge towards the equilibrium distributions found
in [18], and we discuss their properties from the standpoint of nonequilibrium thermodynamics.

2. Reversible polymerization with one conservation law

We consider a reversible polymerization process made of the following elementary reactions

+
knm

(1] + [m] = [n+ m], (1

nm

where the forward and backward reaction rates, namely k., and k,},, are functions of the polymer lengths n and
m, which are strictly positive and symmetric under a permutation of n and m. We denote by ¢; the concentration
of polymers oflength I. The evolution of this quantity is ruled by

M

(= l Z (krj—mcncm - kn_mcn+rn) -

n+m=I>1 n

(kl-rtclcn - kl;£l+n)’ (2)
1

which preserves the total concentration of monomers (i.e. the concentration that one would get if all the
polymers were broken into monomers) M = ZZI Ic;, but not the total concentration of polymers ¢ = Zil
Therefore in this case, there is only one conservation law, that of M, and one can assume M = 1. Note also that
equation (2) generalizes the Becker—Doring equations which describe the dynamic evolution of clusters that

gain or lose only one unit at a time [34, 35]

Cl.
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Assuming that the reaction (1) can be treated as elementary, the entropy production rate is given by [36, 37]

2= ?Z(k;:—mcncm - kn_mcn+m)1n Ili;lt”ﬂ 20, (3)

C
n,m nmtn+m

where R is the gas constant. The entropy production rate vanishes when the system reaches equilibrium, i.e.
when and only when the detailed balance is satisfied:

+ .eq.eq _ 1.— ~¢©
knmcnqcmq - knmcn-?—m' (4)

Using the inequality In x < x — 1, which holds for all x > 0, one easily proves that the following quantity is
non-negative, convex and vanishes only at equilibrium

LERchln;—;q—R(c—ceq)ZO. (5)

Indeed, by taking the time derivative of L(¢) and using the definition of ¢, one obtains dL / dt =R 2 e
log ¢;/¢;*9. Now using (2), we obtain two terms. The first term is

32 T (ot = kinwen)in = = 5 3 (hentn = i) In 252,
! I

n+m=I 2 n,m Cntm

while the second one is
- C R _ cyC
-R Zz (krjicncl - knlcn+l>ln C_eq = _E Z (krj—mcncm - knmcn+m)1n Cezcrzq .

1 n ) n,m n =m

By adding these two contributions and using the detailed balance condition of (4) as well as (3), one finds that
. C] d
X=—R ) ¢ln =——L2>0. (6)
; : o e~

This proves that L is a Lyapunov function, i.e. a non-negative, monotonically decreasing function, which
vanishes at and only at equilibrium. The existence of such a function implies that the dynamics will always relax
to aunique equilibrium state. In [38], the authors show that for a chemical system containing a finite number of
homogeneous phases, a Gibbs free energy function exists that is minimum at equilibrium. In the context of
reacting polymers, a similar free energy function has been derived in [9]. In view of the non-increasing property
of this function, the authors have coined the term ‘F-Theorem’. We discuss below its relation to the more usual
H theorem.

2.1. One-fluid version

Until now, our model was exclusively expressed in terms of concentrations and could be used to study non-
chemical dynamics such as population dynamics. We now introduce the one-fluid model, where the solvent is
not described either by choice or because it is absent. The molar fractions of the polymers of length I, with [ > 1,
are x; = ¢;/c while the Lyapunov function is

L=Rchllnielq+RclnL—R(c—ceq)20. (7)

I>1 X Ceq

Itis important to note that this Lyapunov function is in general distinct from the relative entropy or Kullback-
Leibler divergence between the distribution x;and x79, which represents only the first term in equation (5). The
reason for this difference is that ¢;, contrary to x;, cannot always be interpreted as a probability since its norm is
not always conserved. The two quantities however become equivalent (i.e. they only differ by a constant) when
the total concentration of polymers c(¢) is constant in time. If furthermore — Z | X1 In x,°9 is constant in time (the
meaning of this assumption will become clear in the two-fluid model), then the negative of the Shannon entropy
(which is related to the classic notion of free energy of mixing introduced in [3, 4] as explained in [39])

Ssh = —R sz In xj, (8)
I>1

becomes a Lyapunov function and (6) reduces to the famous Boltzmann ‘H theorem’.

2.2. Two-fluid version

In order to make contact with thermodynamics, we now introduce the two-fluid model which includes the
solvent explicitly in the list of chemical species. Then, the molar fraction of the polymer of length / becomes
y () = ¢ (¢) /C (), which importantly is now defined with respect to the total concentration of all species

including the (time-independent) solvent concentration ¢, (water for instance): C (f) = Zl> ol (t)=c(t) + co»

3
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where ¢ () = Z 151 (t). If thereis no solvent, ¢y = 0 and one recovers the molar fraction of the previous

section which was denoted by x;. In dilute solutions, since y, is very close to one and the other y;are much
smaller, C(t) becomes almost constant: C & cg. The chemical potential of a polymer of length /in a dilute
solution is defined by y¢; = u, + RT In y, where y * = h” = Ts) is the standard reference chemical potential

and hlo and s are the standard enthalpy and entropy, respectively. We restrict ourselves here to ideal solutions,
and by this we assume that this form of chemical potential applies not only to the polymers (I # 0) but also to the
solvent. An interesting study of the effect of non-ideality on the time evolution thermodynamic quantities
during reversible polymerization can be found in [40].

Let us define the intensive enthalpy function as

H=Yyh', 9)

>0

and the entropy function of this two-fluid model as

S:Zyl(slo—Rlnyl). (10)

>0

Their extensive counterpartsare H = CH and S = CS. In equation (10), the first term proportional to s}
therefore represents the entropic contribution due to the disorder in the internal degrees of freedom of each
polymer, while the second term represents the nonequilibrium entropy in the distribution of the variables y,
[26]. Let us introduce the intensive free enthalpy

G=H-TS= ZJ’I”I’ (11)
>0

where we use the definition of the chemical potential in the last equality, and its extensive counterpart G = CG.
Since the change of chemical potential associated with each reaction must vanish at equilibrium, i.e.
Ap=p,, . — W — H, = 0,using the definition of the chemical potential, we find that

p:
ndm (0 0 _ 0
RT In Sy = (,un+m H, /,tm>. (12)
Combining (12) with (4), we find that the kinetic constants must satisfy the local detailed balance
k}.Cea
RT In = = —(unom —u) - /4,2), (13)

nm

where C*1 denotes the equilibrium value taken by C. We note that since the chemical reactions do not involve a
solvent, we formally define the rate constants with any zero subscript (1 or 1) to be zero. Naturally, equation (13)
is not applicable in this case. The validity of equation (13) relies on two main assumptions: the first one is that of
dilute solutions, while the second one is the ideality of the heat bath. The latter assumption means that there are
no hidden degrees of freedom which can dissipate energy in the chemical reactions under consideration, which
implies in particular that these reactions must be elementary.

Using the definitions of the enthalpy and entropy functions, we find that

d 1
d_H - 5 Z(k’j—mcncm - kn_mcn+m) (h;?+m - hi? - h191) (14)
t
and
ds 1 Yl
— == kot Cnm = KimCrtm )| Smam — 50— 59 4+ R1ln 22| 15
dr 2 zﬂ;( o) o0 Yyt "
Asaresult, one finds that
RT Ynamdn T
9 == (k:mcncm - kn_mcwrm)ln ;7)/ =RT Zél In }Zq, (16)
dt 2 nm }’,,+m)’n}’m 1 yl

where we used equation (12) to obtain the last equality. By including the solvent in the sum, as the term
corresponding to =0, we have Z ol = 1and therefore Z 150 3 = 0; thus we can rewrite the above equation

as

dg d Y
— =RT—|C In —|. 17
dt dt[ gyl n leq] (17)
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The entropy production (3), using (13) and the chemical potential definition, may be written as

C
-2 + - — 0y -y - -~
T = 5 E (knmcncm knmc,,+m)(/,tn+m H, — W, — RT In Ceq) > 0. (18)

n,m
Using equations (14) and (15), it can be rewritten as

TZ:-i[H—TS-RTClni—RT(CEq—C)]>o. (19)
dt Cce

The first term is the heat flow, the second is the entropy change and the third and fourth terms represent a
contribution due to the change in the total concentration. It is important to note that within the two-fluid model
with ideal solutions, since C(#) is essentially constant, these latter two contributions are negligible. Neglecting

these terms, the entropy production can be expressed as the change in free energy which is also equal to a change
in Kulback—Leibler divergence between the nonequilibrium and the equilibrium polymer distribution

dg
T =—-—=—-RT—|C In — 0. 20
- ( 2)’1 leq] (20)
We finally note that when all the polymerization reactions are neutral from a standard chemical potential
standpointi.e. when yn0+m = ,uno + ,u’g forall n, m, one has

d
T—[ch lnyl] = RTE(CZ}’Z lnyl], (21)

>0 120

which together with equation (17) implies d; (C Z ;)i Iny1) = 0. Since C can be assumed constant, the
Lyapunov function can be expressed only in terms of the Shannon entropy constructed from y;instead of the full
KL divergence. The dynamics can then be compared to a Boltzmann equation where the relaxation to
equilibrium is purely driven by the maximization of the Shannon entropy, as in the H-Theorem.

3. Application to the String model

As asimple realization of the reversible polymerization given by equation (1), we now consider the String model
which assumes constant rates of aggregation and fragmentation, independent of the length of the reacting
polymers. Following [13], we choose k,}, = 2 and k,,,, = 2. From equation (2), the dynamics follows

Z cicj + 24 Zc] —2cc— Al = 1)g, (22)

i+j=1 >1

where we used the fact that (] — 1) combinations of i and j satisfy the relation i + j = I. The detailed balance

condition defining equilibrium implies that ¢;1¢/ = A}, which leads to one parameter solutions of the form

¢f9 = JB'. Assuming the total monomer concentration tobe M = Zl Ie; = 1, one finds

A 22
ﬂ=1+5— 2.+I (23)

since the solution ¢;must decay at large I.

3.1. One-fluid version of the String model
The evolution of the length distribution in the String model can be obtained as a function of time by explicit
numerical integration. The results, starting from time =0, are shown in figure 1.

The evolution equation (22) can be solved using an exponential ansatz of the form [13]

a(t) = (1 —a()ad'(), (24)

which satisfies the conservation of the total number of monomers. The resulting differential equation for a(t) is
a = (1 — a)* — Aa. This equation can be easily solved with a monomer-only initial condition, ¢; = §; ;, which
translates into the condition a (0) = 0. Unfortunately, the exponential ansatz cannot be used to describe more
general initial conditions, which cannot be accounted for by such a simple I-independent condition on a(0). For
the monomer-only initial condition, the following explicit solution is obtained:

2 (6) = 1- exp{—(a+ - a_)t}

oy — a_ exp{—(a+ —a_) t} (29)

5
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Figure 1. Evolution of the size distribution of polymers ¢; for the String model at different times =0, t=0.2, t=0.5 and =1 starting with
amonodisperse distribution with characteristic length /=4 at time t=0. The transition rates are constant and correspondto 4 = 1. A
rapid convergence towards an exponential distribution can already be seen after a time ¢ ~ 1.

2
aisl+ii,//1+'1—, (26)
2 4

where the two roots a_ and a, are related by @_ar,. = 1. Atlong times, the RHS of equation (25) tends towards

1/a; = a_ = f3,so that the system approaches the equilibrium distribution ¢; (00) = ¢/ = (1 — a_)? (a )1,
Using (25), one can obtain the explicit time evolution of the quantities of interest: the total polymer
concentration is time-dependent and reads

c(t)y=Yalt)=1-a(). (27)
=1
The Shannon entropy at the one-fluid level, and defined in equation (8), is given by
Son(0) = ~In(1 = a() = —22 1 a(, @8)
1 —al(r)
and reaches its equilibrium value Sgj (00) = —In(1 — a-) — (a—/(1 — a_)In a_ for long times. Its rate of
change is
. a(t)
Ssh = —a(t)lna(t) + —————1Ina(s), (29)
(1-a())
while the entropy production rate given by equation (6) is
3= R(Zln 1-al®) “(t))((l —a(t)y - 2a(0)). (30)
1 —-oa_ o_

For completeness, we also discuss an approach using generating functions to study the String model without
resorting to the exponential ansatz which is restricted to the monomer-only initial condition. The full dynamics
remains nevertheless complex to solve within this approach. Introducing the generating function
x(z, 1) = 2121 ¢/ (t)z" and using equation (22), we obtain the dynamical equation

., ! ( oy )
= = — 2¢cy + 24 cizt = ANz= -y}, 31
o =xt =2 ZZ:EJ il (31)

which can be simplified since for |z| < 1, Zl 2j>l cjz’ = (cz — )()/(1 — z),so that

oy 5 z—y ( %) )
= =yt = 2qr+ 24 - A z= -y 32
ot d “ 1-z 0z “ .
The stationary solution of this differential equation, i.e. the solution of dy/dt = 0 has the following form:
Ac®dz
“Az)=y(z,t > 0) = ———m— 33
792 =1 ( T (33)
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Figure 2. Left: Shannon entropy of the one-fluid version of the String model, S}, as a function of time. The various curves represent
different initial conditions of the form ¢; (t = 0) = &, for different total monomer concentrations M = 1, 2, 3 and 4. Right: total
polymer concentration c(¢) for the same initial conditions, as found by numerical integration of kinetic equations (solid line) or from
an exact expression using equation (36) (symbols). Both figures have been constructed using the same rates as figure 1.

which satisfies y (1, t » o0) = Zl>1 ¢g=c9and y'(1, t > o) = (1 + ¢9)/A. Since

M= Zl> . le; = y'(1, t > o0) = 1, onerecovers the equilibrium state obtained before, namely ¢¢1 = 1 — g,

with /3 given by equation (23). For an arbitrary M, one deduces from equation (33) that the equilibrium polymer
length distribution is ¢4 = Aa', where & = ¢®9/(4 + ¢%9). With our choice of initial condition of the form
¢;(0) = &y, we have Zl>1 le; = M. Therefore, the equilibrium solution is

2
(Ceq> cea )
Cleq = T(l - M) . (34)

Besides the stationary solution, it is also possible to obtain analytically the evolution of the total
concentration ¢(). To show this, we take the limit z — 1in equation (32). Using the 'Hospital rule, we obtain

t=—=c2+ 1M - o). (35)

The explicit solution of equation (35) for ¢ (0) = 1, asimposed by our choice of initial conditions of the form
q(t=0)=8pis

c(t) = 2 tanh (iA + arctanh? 2) _A (36)
2 2 A 2

where A = \JA (A + 4 M) . One can verify that equation (27) is recovered for the monomer only initial
condition, M = 1, as expected. Furthermore, one recovers that ¢(¢) tends towards ¢*4 = (A — 1)/2ast — oo,
which is the equilibrium concentration entering equations (33) and (34).

Incidentally, one may wonder whether this behavior of the total concentration agrees with the predictions of
[6] regarding the notion of critical concentration in reversible polymerization. This is indeed the case: if one
evaluates the concentration of monomers ¢; as a function of M with equation (34) and eliminating c*? using the
above expression, one finds a function of M which first increases rapidly and then reaches a plateau for M > 1.
Naturally, this is not a sharp transition but rather a cross-over between two regimes. One can also look at the
average length of the polymer M/c®d which increases significantly when M becomes larger than A. Both features
indicate that A represents the critical concentration of this model [6].

As shown in the right part of figure 2, which has been obtained by explicit numerical integration, the
polymer concentration c(t) either decreases as a function of time for the monomer-only initial condition
(M = 1) or increases as a function of time when the initial condition corresponds to polymers of length 3 or
above (M > 3), while it remains constant in the case of dimers (M = 2). Intuitively, when the initial condition is
monomer-only (M = 1), there is mainly aggregation of monomers, so that the net concentration must decrease
with time. On the other hand, if the initial solution consists of long polymers (M > 2), the probability of
fragmentation is higher than that of aggregation. As aresult, the total concentration must increase with time. For
the dimer-only initial condition (M = 2), the probability of fragmentation is the same as that of aggregation, so
that the net concentration stays constant. As a result of this time dependence of ¢(¢), we also see in the left part of
figure 2, that the Shannon entropy Ss}, does not always increase monotonically as a function of time. It does so
for M < 2butnotfor M > 2, where it presents an overshoot before reaching its equilibrium value. Such an
overshoot reveals that the Shannon entropy is not a Lyapunov function L as discussed in the previous section.

7
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Figure 3. System entropy S for the two-fluid version of the String model as a function of time. The various curves represent different
initial conditions as in figure 2. The solvent concentration is ¢ = 1000 and the transition rates are the same as in figure 1.

3.2. Two-fluid version of the String model
One of the main differences between the two-fluid approach as compared with the previous one with a single
fluid, is the existence of the local detailed balance condition, namely equation (13), which connects the rate
constants to the difference of standard chemical potentials. Furthermore, the specific form of the standard
chemical potentials enters in the equilibrium length distribution of the polymers and into the kinetics of the self-
assembly process.
For instance, if the polymers self-assemble linearly, the standard chemical potential of a polymer oflength /,

U IO for ] > 1, maybe written as ,ulo = —(I = 1)aRT, where aRT represents the bond energy between two
monomers [41]. For such a model, a reaction is neutral from the point of view of chemical potentials, i.e. when

0 = ,uno + /472, when the polymer chain is sufficiently long so that p IO ~ —[aRT.From equation (13), it

”T’l+ m
follows that

k.C

RT ln”km—_ = —(yr?+m - ul _/‘12) = aRT, (37)
nm

which then implies a relation between the parameter 4 defined earlier as the ratio of the rate constants (assumed

constant) and the parameter a, namely 4 = e™*C*4.

Since we introduced aRT as the bond energy between two consecutive monomers, the simplest choice is to
assume that y 10 leads to a molar enthalphy #,” = —(I — 1)aRT,and a molar entropy s{ which is assumed to be
negligible with respect to the enthalpy part due to bond formation. With this choice, one finds the following
contribution of the polymer to the enthalpy:

Hy = —aRT Y y(l = 1) = —aRT (M — c(t)). (38)

I>1

As discussed previously, at the two-fluid level, this should be complemented by the contribution of the solvent to
obtain the enthalpy H. Similarly, the system entropy S, which contains both contributions, is

S=-R Zyl In y,. (39)

120

In figure 3, we show this entropy function as a function of time for different initial conditions in units of R.
At =0, it equals approximately (1 + In cy)/cy, and it converges towards the equilibrium value of the entropy at
long times. For M > 1, the entropy increases monotonically whereas we see that it decreases for M = 1. Asin the
case of the one-fluid model, this decrease is not inconsistent since the entropy is not a Lyapunov function. We
note that the non-monotonicity that was present in the one-fluid model in figure 2 for M > 1is absent in the
two-fluid case.

If the monomers were to assemble in the polymer in a different way, for instance in the form of disks instead
of linear chains, the standard chemical potentials would be different. In such a case, under similar assumptions
to those above, these chemical potentials would be of the form u lo = —(I — J1)aRT,whereais again some

constant characteristic of the monomer—monomer and monomer—solvent interaction [41]. The term in +/
represents the contribution of the surface energy of the cluster of size I. This term necessarily implies that the rate
constants k,,, k., must depend on 7 and m in order to satisfy the local detailed balance condition equation (13).

For such a case, the above derivation of a simple exponential for the equilibrium distribution would no longer
hold and both the equilibrium and the dynamics will be more complex.
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4. Reversible polymerization model with two conservation laws

As performed previously in section 2 for a reversible polymerization model with only one conservation law,
namely the total monomer concentration M, we now carry out a similar analysis for a different class of models
with two conservation laws, namely M and the total concentration of polymers or clusters, c. Clearly, the latter
quantity varies in time in the String model because some exchange processes in equation (1) produce clusters of
zero length for some n or m. In order to construct a model which conserves the total number of clusters, one
needs to forbid such transitions. One simple way to achieve this is to consider the kinetic model

[n] + [m] - [n+ 1] + [m — 1], (40)
with the conditions n > 1and m > 2, where the latter inequality precisely prevents forbidden transitions. Itis

easy to check that now the total concentration of the polymers, ¢ = €138 well as the total monomer

concentration M = z , lei, remains constant in time. Another important observation is that this model is fully
reversible even if we do not indicate backward reactions explicitly. Indeed, it would be redundant to do so, since
backward reactions are already included in the forward reactions via an appropriate choice of the indices (1, m).
As performed in the previous section, we first present a general proof of convergence to equilibrium and then we
make contact with thermodynamics by introducing chemical potentials in dilute solutions.

The equation for the rate of change of concentration for a polymer size distribution is

o &)
ag=0(-2) Z[kl—l,n+lcn+lcl—1 - knzcncz] + ) [km—1,l+1cz+1cm—1 - klmclcm]) (41)
n=1 m=2

where the Heaviside function @ (I — 2) equals 1 for [ > 2, and is zero otherwise.
Assuming again elementary reactions, the entropy production rate X'is
R kumcnc
= E z [knmcncm - km—l,n+lcn+lcm—1:|ln — " =0, (42)

nz1,mz2 m—1,n+1Cn+1Cm—1
which vanishes when the detailed balance condition holds, i.e. in equilibrium:
eq .eq __ e e
kﬂmcnqcmq - km—l,n+lcn$lcmq—1‘ (43)

Following a procedure similar to that of section 2, one can show that, since cis constant, the relative entropy
between the distribution x;and x;"

(] X1
L=RZC1 lnCl—eq =Rc2x1 In F’ (44)
1 1

is a Lyapunov function. Indeed, this quantity is convex, non-negative (by the inequality In x < x — 1),anda
monotonically decreasing function vanishing at equilibrium. This latter property follows from

dL ]
— =R )Y ¢In—, 45
P ; e (45)
which using equation (41) and the detailed balance condition of equation (43) gives
dL ki—1 n+1€n+1€1-
@ _r Z kyicpc In S-Lntlfatlti-l (46)
dr i L2 1l CnCl

After symmetrizing this sum, we recover that ¥ = —dL/d¢ > 0. This result is equivalent to equation (6) in the
presence of the additional conservation law ¢ = 0. This system will therefore relax to a unique equilibrium state,
where Xvanishes.

We now turn to the two-fluid version of the model. As in section 2.2, for the two-fluids model the molar
fraction of a polymer of length lis y (t) = ¢;() /C, where C = ¢ + ¢ is again a constant. The change in chemical
potential during the reaction (40) is given by

A= gy F Hopey = My = i

Yo+ 1Vm—1
=pl +pud = pud—p + RT In =" (47)
ynym
Since at equilibrium Ay = 0, using (43), we get
by k
A pd =l —pd  =RT ln% = RT In —"—. (48)
}/n }/m km—l,n+1
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The enthalpy change (9) can be written as

ddt[ dt i’ = Zc’hl
= Z (km—l,n+lcn+lcm—l - knmcncm)(hf + hr(r)l)
n=1l,m>=2
= Z (knmcncm - km—l,n+lcm—lcn+l) (hm 1+ hn+1)
n=z1l,m>=2
= % lz 2<knmcncm - km—l,n+1cn+lcm—1> (hng 1 + hn+1 hi? - hr(r)t) (49)
nzl,m>

and the entropy change (10) as

i—f Z)’l(sl —Rlnyl) = Zt1<510_R1n C’)

l>0 >0
Y
= Z (knmcncm - km—l,n+lcn+lcm—l) 5;101—1 + 57?+1 - 51? - 57?1 + R1n l$‘| . (50)
n=z1l,m=2

Since the entropy production can be rewritten as

Ky € Cm
_RT Z [knmcncm_ m— 1,n+lcn+lcm—l]ln

n>1,m>2 km—l,n+lcn+lcm—1

1 Y,
=_ Z [knmcncm - km—l,n+lcn+1cm—1] ﬂr? + /4,2 - ﬂn0+1 - ,u,(r),_l + RT In —
2 sims2 Yot 1Vm-1
1
= E (knmcncm - km—l,n+lcn+1cm—1) (ﬂn + Wy = My — ﬂm—l)’ (51)
n=1l,m>=2

we can express it, as in (20), as

- Y199 _ pd
IE=——(H-TS) = = -R [CZ,

dr >0

] _dL g )

To summarize, we recover exactly the same results as in section 2, provided we treat the total polymer
concentration c as a constant.

5. Application to the kinetics of glucanotransferases DPE1 and DPE2

In this section, we consider the polymerization of glycans by two enzymes studied by Kartal et al [ 18], namely the
glucanotransferases DPE1 and DPE2. We show how to construct dynamical models that are compatible with the
equilibrium polymer length distributions that they found and we study the dynamics of the Shannon entropy for
various initial conditions.

5.1. Kinetics of glucanotransferases DPE1

Let us assume that the initial condition is not purely made of monomers, since the solution of [ 18] becomes

singular in that limit (see equation (4) on P3 of [ 18] when the parameter DB, = 1 for instance), and let us

construct an appropriate dynamics, choosing for simplicity constant rates k,,,, = x independent of n and m.
Using equation (41), we havefor [ > 2

@
dt
where the second term forbids transitions from [1] + [I — 1]to [0] + [/], while the last term forbids transitions
from [1] + [[Jto[0] + [I + 1].Similarly, for ¢;, the evolution is
dCl

- = K[C(Cz —-q) + clz]. (54)

Itis straightforward to verify that these dynamics have two conservation laws, namely Z 15, & = cand

2121 lCl =M

= K[C(Cl+1 + o1 — 261) - ac + Clcl]; (53)

10
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Figure 4. Left (resp. right): evolution of the Shannon entropy Sgj, for the one-fluid DPEI (resp. DPE2) model with time for different
initial conditions. For both plots, the curves for M = 1, 2, 3 and 4 correspond to initial conditions of the form ¢;(0) = 8. For the
DPE2 plot on the right, M = 4.6 corresponds to an initial condition of the form ¢;(0) = 0.45;; + 0.65;;. Note that when M =1 for
DPEI and M = 1, 2 and 3 for DPE2, the Shannon entropy is zero since no evolution is possible from the initial condition. We have
chosen the constant rate k = 1.

Introducing the generating function y (z, t) = 21>1 ¢;(t)Z' asin section 3 leads once again to a set of
equations for the dynamics which unfortunately cannot be solved analytically. However, it enables us to find an
explicit solution for the equilibrium state:

%z
Gz)=y(z,t > 0) = ———mMm8, 55
2@ =x( ) M — Mz + cz (55)

which means that the size distribution ¢; tends towards the following equilibrium distribution for I > 1:

2 -1
ﬁ=i@—i), (56)
M M

where the total polymer concentration cis now fixed by the initial condition. We note that the form of the
equilibrium distribution is the same as that of the String model, but ¢*in equation (34) is different from

¢ (t = 0), whereas in the present DPE1 model they are the same. Our equilibrium solution (56) also matches that
of Kartal et al found for the polymerization of glycans by glucanotransferases DPE1 [18]. In this reference, the
authors use the polymer fractions x;, where I stands for the number of linkages in one cluster, rather than our
cluster distribution c;. They are related by x; = ¢;11/c. Their conservation laws therefore read Z 150X = land

Z 150 1 = DPyi — 1, where DP;y,; stands for the initial degree of polymerization. The latter is related to c by

DP,; = M/c,and therelation 1 — ¢/M = e~ matches equation (4) of Kartal et al.
The Shannon entropy, equation (8), at equilibrium and in R units, reads

Ssh(t—>oo)=MlnM—(M—l)ln(M—l), (57)
Cc Cc Cc Cc

and has the standard form of a mixing entropy. Note that the case of the monomer-only initial condition,
namely ¢ = M = 1, is singular since no evolution is possible from this initial condition according to the present
dynamics. In this case, the Shannon entropy stays at zero, for all times #, whereas for other initial conditions it
increases monotonically as shown in figure 4.

5.2. Application to the kinetics of glucanotransferase DPE2

As discussed by Kartal et al [ 18], the enzyme DPE2 introduces an additional constraint with respect to the
enzyme DPEL. This additional constraint, which imposes a conservation of the total number of monomers and
dimers, reads in our notation ¢; + ¢, = pc, where p depends on the initial conserved total number of molecules
of maltose (corresponding to ¢,) and glucose (corresponding to ¢;). This additional constraint requires a
modification of the dynamical evolution equations. We propose the following modification:

dc

d_tl = K[C(Cz —a) -t + 6163], (58)
de, _ _da (59)
dt dt’

11
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dC3 2
E_K[C(C4_C3) —czc4+c1(:3+c3], (60)

andfor ! > 4,
dg;
P K[C(Cz+1 +c-1— 261) — CC-1 — €41
— c36-1 + (c1 + o+ 63)61], (61)
As in the case of DPEI, one can solve the stationary state of this equation by means of generating functions.
One obtains the following stationary generating function:

[clcz— ccl—zz(clcz— CCz+CC3)]Z .
62

A(z)=y(z,t > ) =
d X c(z=1)—cz+ ¢ — ¢z

One obtains from this ¢; = pc/(1 + f)and ¢; = ¢1f = fpc/(1 + f)with f= (c — ¢; — ¢3)/(c — ¢;),and for
123,¢q=cf Hwithe; = (1 - p)(1 — f)c.In other words, for DPE2, the equilibrium distribution is again
exponential but only forlength I > 3, for | < 3 theratio of ¢,/ for instance does not match the ratio ¢, /¢; for
I > 3. The quantity fcan be written in terms of p and conly as

fopea-p—, 63)
1+f 1—f
which matches equation (S57) obtained by Kartal et al [ 18]. Therefore, the equilibrium state (62) is the same as
that discussed in this reference.

We have thus proposed dynamical models reproducing the equilibrium distribution of glycans in the
presence of DPE1 or DPE2. The difference between both situations is that DPE1 has two conservation laws,
namely that of M and of ¢, while DPE2 has a third one corresponding to that of p. As a result, there are more
initial conditions of the type ¢;(0) = &, from which no evolution is possible in DPE2 (M < 3) as compared to
DPEL. When this happens, Ss, = 0 as shown in figure 4. While this forbids initial conditions of pure dimers for
instance, no such constraint exists for mixtures. For instance, an initial mixture of 40:60 of maltose and
maltoheptaose considered in [18], corresponding to ¢;(0) = 0.46;; + 0.65;7, has p=0.4 and M = 4.6, and evolves
according to DPE2 dynamics as shown in figure 4, while an initial solution of pure maltose would not.

The limiting value of the Shannon entropy at long times can be obtained analytically as a function of fand p
for any initial conditions, but the expression is lengthy and will not be given here. We have checked that it
reproduces the correct values of the plateaux in figure 4.

M—ZC(l—%p)zpc

6. Conclusion

In this paper, we have considered two classic models for reversible polymerization in closed systems following
the mass-action law, one preserving the total polymer concentration and the other one not. In both cases, the
entropy production can be written as the time derivative of a Lyapunov function which guarantees the relaxation
of any initial condition to a unique equilibrium satisfying a detailed balance. As such, these models could also
describe non-chemical systems undergoing aggregation—fragmentation dynamics.

When considering the polymerization dynamics in dilute solutions, we have shown that a consistent
nonequilibrium thermodynamics can be established for both models. We find that entropy production is the
negative of the time derivative of the nonequilibrium free energy of the system, which is a Lyapunov function
and takes the form of a Kullback—Leibler divergence between the nonequilibrium and the equilibrium
distribution of polymer length. A related result was found for the cyclical work performed by chemical machines
feeding on polymers in [42]. Similar relations expressing the entropy production as a Kullback—Leibler
divergence between the nonequilibrium and equilibrium distributions have also been found or used in many
studies on stochastic thermodynamics [43-45].

As an application of reversible polymerization models which do not preserve the total polymer
concentration, we have studied the String model. In this model, the rates of aggregation and fragmentation are
constants, which leads to an exponential equilibrium distribution of polymer length. At the one-fluid level, we
have observed that the Shannon entropy is non-monotonic, which is allowed since it differs from the Lyapunov
function. At the two-fluid level where there is proper nonequilibrium thermodynamics, no such non-
monotonicity arises.

As an application of reversible polymerization models preserving the total polymer concentration in
addition to the total number of monomers, we have studied two specific examples named DPE1 or DPE2 after
[18]. We have shown how to construct dynamics which converge over long times to the expected form and we

12
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have discussed the time evolution of the Shannon entropy at the one-fluid level. In all cases, we have been able to
find the form of the stationary distribution by applying the method of generating functions. This method is
general and also applicable to situations where the stationary distribution is a nonequilibrium one [45].

Key assumptions of our approach are that we disregarded fluctuations, assumed homogeneous and ideal
solutions, considered closed systems, and we treated the polymerization reactions as elementary. Each of these
assumptions could in principle be released and the resulting implications analyzed. Another interesting future
direction concerns the study of nonequilibrium thermodynamic devices or strategies which can be used to
engineer a particular polymer distribution (for instance a monodisperse one) starting from an initial
polydisperse one (an exponential one for instance).
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