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We show how to extract an estimate of the entropy production from a sufficiently long time series
of stationary fluctuations of chemical reactions. This method, which is based on recent work on
fluctuation theorems, is direct, non-invasive, does not require any knowledge about the underlying
dynamics and is applicable even when only partial information is available. We apply it to simple
stochastic models of chemical reactions involving a finite number of states, and for this case, we
study how the estimate of dissipation is affected by the degree of coarse-graining present in the input
data. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821760]

I. INTRODUCTION

Stochastic fluctuations play a key role in many living
processes, in particular at the molecular level in cells, where
many complex processes occur (non-regular feedback, regula-
tion, proof-reading, etc.) on different time scales. These fluc-
tuations are intrinsically non-equilibrium in nature. With the
development of single molecule techniques and chemical sen-
sors, more and more data representing non-equilibrium fluc-
tuations of small objects are becoming available in soft matter
and biology. With all these developments, the question of ex-
tracting relevant information from an increasing amount of
experimental data of this kind is becoming central.

One example of relevant information is whether the fluc-
tuations originate from active, energy consuming, processes
or from passive, equilibrium like, processes. Ideally, one
would like to distinguish one from the other directly from tra-
jectory information, without any knowledge of the dynamics,
and one would also like to measure the distance from equilib-
rium by an estimate of the dissipation or entropy production.
One possibility to do this is to first infer the rate constants en-
tering in the dynamics, by studying for instance the response
of the system to a perturbation1 or by using Bayesian infer-
ence techniques. One can then test directly whether detailed
balance holds. Alternatively, one can also determine whether
the fluctuation-dissipation theorem (FDT) holds without try-
ing to infer the dynamics first.2 Although these are useful
methods, there are also several limitations to such approaches:
(i) the system must be perturbed and (ii) the determination
of the entropy production from the violation of the FDT is
not straightforward in general. The latter requires a deter-
mination of the dynamics which furthermore needs to be of
the Langevin type.3, 4 Such an approach is related to many
recent studies on a modified fluctuation-dissipation theorem
near non-equilibrium steady states.5–7

In the present paper, we apply a recent method8 to esti-
mate the dissipation from trajectory information only. This
method avoids the drawbacks (i) because it does not re-

quire to apply a perturbation, it is non-invasive, and (ii) be-
cause it gives direct access to the entropy production. The
method is based on a connection between two measures of
irreversibility,9 similar to the Landauer principle linking dis-
sipation and information processing and is rooted in recent
progresses on fluctuation theorems. The first measure of ir-
reversibility is characterized by the thermodynamic notion of
entropy production. The second measure corresponds to the
temporal asymmetry of the fluctuations,10 it is an information
theoretic quantity constructed from the trajectories. This tem-
poral asymmetry is related to the difference between the dy-
namical randomness associated with a direct or forward path
and that associated with an appropriate reverse path in which
the driving must be reversed.11 In the particular case of non-
equilibrium steady-states, a simpler formulation is possible
because the driving, if present, is independent of time, and
therefore there is no need to reverse the driving in the back-
ward process.8

In Sec. II, we present the general principle of the method
to estimate the dissipation using non-equilibrium fluctuations.
The method is then illustrated using a linear three state en-
zymatic network. We note at the end of this section that the
method requires a knowledge of all the chemical transitions
which occur at a given time. An experiment will hardly give
access to such a detailed information. Checking how the eval-
uation of the entropy production is affected by the partial
knowledge of the system is, therefore, necessary and this will
be done in Sec. III using the same three state model as ex-
ample. In Sec. IV, we show that the method is not limited to
linear models but is applicable to nonlinear models such as
the Schlögl12 and the Schnakenberg models.13

II. STOCHASTIC DESCRIPTION OF ENTROPY
PRODUCTION FROM NON-EQUILIBRIUM
TRAJECTORIES

In this approach, one considers a block x1..xm of length
m of the original stationary series assumed to be much longer,
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of length n � m. We assume that the random variables x1..xm

can only take discrete values. Let us denote by pF = p(x1..xm)
the probability to observe that block when reading the series
forward in time, while pB = p(xm..x1) represents the probabil-
ity to observe the time-reversed block under the same condi-
tions. A key quantity is the relative entropy between these two
distributions:

Dm(pF |pB) =
∑
x1..xm

p(x1..xm) ln
p(x1..xm)

p(xm..x1)
. (1)

In the case that pF and pB contain the full information about
the dynamics (in a sense to be made more precise below), one
has the following equality in the space of trajectories, with the
Boltzmann constant set to unity:14

〈�S〉 = d(pF |pB) = lim
m→∞

1

m
Dm(pF |pB), (2)

where 〈�S〉 represents the mean entropy production rate of
the trajectory. Here, the notation 〈..〉 means a statistical av-
erage with respect to the probability distribution p(x1..xm),
which in the present case is evaluated using a single very long
trajectory. In practice, instead of evaluating the right hand
side of this equation, one can obtain d(pF|pB) as the limit of
dm = Dm − Dm−1 for m → ∞, which shows a faster
convergence.15 For Markovian dynamics, one can show that
for any m ≥ 0, d(pF|pB) = dm+2 = d2. Numerically, d(pF|pB)
is detected as a plateau for large n when varying the length of
the trajectory n.

A. Application to a three-state enzymatic network

In this paper, we apply this method to chemical reactions
ruled by master equation, thus going beyond the examples
of Ref. 8 which involved only one degree of freedom. As a
paradigm for such networks, we consider the following three-
state enzymatic network:1, 16

A
k1
⇀↽
k−1

B, B
k2
⇀↽
k−2

C, C
k3
⇀↽
k−3

A, (3)

where ki denote the rate constants. We consider a pool of N
particles of this kind. A state of this system can be repre-
sented by c = (nA, nB), where nA and nB are particle numbers
of species A and B given the existence of the conservation law
N = nA + nB + nC.

Let us call pt(nA, nB, nC) the probability to observe such
a state at the time t. It obeys the following chemical master
equation:

dpt (nA, nB, nC)

dt
= k1(nA + 1)pt (nA + 1, nB − 1, nC)

+ k−3(nA + 1)pt (nA + 1, nB, nC − 1)

+ k2(nB + 1)pt (nA, nB + 1, nC − 1)

+ k−1(nB + 1)pt (nA − 1, nB + 1, nC)

+ k3(nC + 1)pt (nA − 1, nB, nC + 1)

+ k−2(nC + 1)pt (nA, nB − 1, nC + 1)

− (k1nA + k2nB + k3nC + k−1nB

+ k−2nC + k−3nA)pt (nA, nB, nC), (4)

which is to be solved with the conservation law N = nA + nB

+ nC. The solution of this equation has the form of a multino-
mial distribution:17, 18

pt (nA, nB, nC) = N !

nA! nB! nC!
pA(t)nApB(t)nB pB(t)nB , (5)

where pA(t) (respectively, pB(t) and pC(t)) is the probability of
a given particle to belonging to the chemical species A (re-
spectively, B and C) at time t. This result holds at any time. In
the stationary state, this solution is denoted by pst(nA, nB, nC).

From Eq. (5), one deduces that for any i ∈ (A, B, C), the
mean of the random variable ni is 〈ni〉 = Npi and the variance
is 〈(ni − 〈ni〉)2〉 = Npi(1 − pi). As a result, in a volume �,
the concentration of the chemical species i, denoted by [i], is
equal to pi multiplied by the total concentration N/�, i.e., [i]
= 〈ni〉/� = Npi/�. In the limit of � → ∞, the concentrations
and the variables pi obey the deterministic rate equations of
chemical kinetics. In the present case, these rate equations are

dpA

dt
= k3pC + k−1pB − (k−3 + k1)pA,

dpB

dt
= k1p1 + k−2pC − (k−1 + k2)pB, (6)

dpC

dt
= k−3pA + k2pB − (k−2 + k3)pA.

It is also a simple calculation to show that the average
entropy production rate (EPR) is

〈�Ṡ〉 = N
k1k2k3 − k−1k−2k−3

K
ln

k1k2k3

k−1k−2k−3
, (7)

where K is the constant

K = k1k3 + k−1k−2 + k−1k−3 + k−1k3 + k2k1

+ k2k−3 + k2k3 + k−2k1 + k−2k−3. (8)

From this expression, it follows that the condition for which
this system reaches a non-equilibrium steady state different
from equilibrium is k1k2k3 	= k−1k−2k−3. This result holds in
fact for any N due to the linearity of the equation with respect
to N. Note also that this entropy production rate takes the form
of a sum of products of generalized forces and fluxes. Here the
flux is the stationary current Jst = N(k1k2k3 − k−1k−2k−3)/K,
while the thermodynamic force is (in units of kBT following
the convention of Ref. 19) A = ln k1k2k3/k−1k−2k−3, the affin-
ity of the cycle A → B → C → A. More generally, for any
non-equilibrium steady state (NESS), the mean entropy pro-
duction rate can be expressed as a sum of product of fluxes
and affinities on the cycles of a fundamental set.20

We are now in position to explain how to recover Eq. (7)
using the formulation of Eqs. (1) and (2). To do so, we have
simulated numerically the chemical master equation using
the Gillespie algorithm,21 which generates the correct expo-
nential distribution of waiting times between two consecutive
events. We have then used the time series constructed in this
way to evaluate the dissipation using Eqs. (1) and (2). Since
Eq. (2) represents an entropy per data in discrete time while
the Gillespie algorithm is formulated in continuous time, we
introduce the characteristic time per data τ defined below to
convert the discrete time formulation to the continuous one.
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Let us consider a Markovian dynamics so that we only
need to focus on D2. According to Eq. (1), D2 is

D2 =
∑
c,c′

p(c, c′) ln
p(c, c′)
p(c′, c)

, (9)

where c and c′ refer to two consecutive values of the state
vector (nA, nB) in the time series which is analyzed. In this
case, the expression in Eq. (9) becomes

D2 =
∑
c,c′

p(c, c′) ln
p(c|c′)
p(c′|c)

, (10)

where p(c|c′) represents the conditional probability to go from
state c′ to c. In a Markov process, one can show that this
conditional probability is related to the transition rate by the
expression

p(c|c′) = w(c, c′)
λ(c′)

, (11)

where w(c, c′) is the transition rate to go from state c′ to c and
λ(c) = ∑

c′ 	=c w(c′, c) represents the escape rate to leave state
c. It follows from the above equations that

D2 =
∑
c,c′

w(c, c′)pst (c′)
λ(c′)

ln
w(c, c′)λ(c)

w(c′, c)λ(c′)
. (12)

The average escape rate in this problem is

τ =
∑

c

pst (c)
1

λ(c)
. (13)

At a mean-field level, for the three state enzymatic model, this
time is

τ = 1

N (k1pA + k2pB + k3pC + k−1pB + k−2pC + k−3pA)
,

(14)

where pA, pB, and pC are the stationary probability distribu-
tions introduced earlier. We have verified that this expression
provides a good estimate of the characteristic jump time, by
comparing it with the mean duration between two configu-
ration changes observed in the sequence, which can be de-
termined numerically. For more general situations, where a
formula like Eq. (14) may not be available, the numerical de-
termination is the only option. The EPR is then obtained from
D2 and τ as

〈�Ṡ〉 � D2

τ
, (15)

where τ is approximated by the total time of the Gillespie sim-
ulation divided by the total number of configuration changes
or “jumps.”

In Figure 1, we compare the numerical estimation of the
EPR based on D2 with the exact value given by Eq. (7). To
do this we plot D2 as function of the trajectory length n and
we look for a plateau at large n. As shown in Figure 1, we
indeed find a plateau at the expected value of the EPR (solid
line). In fact, it is remarkable that we are able to recover in
this way for any system size N, the expected exact value of the
entropy production rate. Varying N at fixed rate constants only
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FIG. 1. Estimate of the entropy production rate (in units of kBT per s) as
function of the length of the trajectory n using full information with D2 (cir-
cles) compared with the exact value of entropy production given by Eq. (7)
(solid line). The other symbols correspond to estimates using partial informa-
tion: D3 (plus), D4 (stars), and D5 (triangles). All the estimates are divided
by the characteristic time τ , which is numerically estimated from the trajec-
tories. The parameters are k1 = 1.2, k−1 = 0.3, k2 = 0.9, k−2 = 0.4, k3 = 0.5,
and k−3 = 0.2.

affects the characteristic time τ but not the relative entropy, as
expected since time does not enter in Eq. (1).

III. ROLE OF COARSE-GRAINING OF THE
DESCRIPTION IN THE ESTIMATION OF ENTROPY
PRODUCTION

In the three states enzymatic network studied above,
we are able to recover the known amount of dissipation in
this NESS uniquely from trajectory information without any
knowledge of the underlying dynamics. It is important to
point out, however, that this determination requires a knowl-
edge of all the elementary transitions with a single molecule
resolution. For applications, such a time and particle number
resolution will be hard to achieve, which is why it is impor-
tant to determine how the estimate of entropy production is
affected by the unavoidable coarse-graining of the original
data. Given that our method is based on a fluctuation theo-
rem, a related question is how coarse-graining affects fluc-
tuation theorems.22, 23 In general, Eq. (1) should hold as an
inequality,24 namely,

〈�S〉 ≥ d(p̃F |p̃B) = lim
m→∞

1

m
Dm(p̃F |p̃B), (16)

where p̃ represents a coarse-grained version of the path prob-
ability denoted by p above.

We provide below an illustration of this idea by distin-
guishing three forms of coarse-graining for the model intro-
duced above: (a) we discard one chemical species, so we are
given only the trajectory of the chemical species A, namely,
nA(t), (b) we only have access to finite resolution in particle
number or concentration, and (c) we only have access to finite
resolution in time. Note that coarse-graining due to decima-
tion of fast states is included in (a) and (b); for instance, a
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coarse-graining of type (a) is considered in Ref. 25, while a
coarse-graining of type (b) is considered in Ref. 26.

Let us first consider the case (a), where only the variable
nA is observed among the three variables nA,nB, and nC. In this
situation, we show explicitly below that D2 = 0. According to
Eq. (1), D2 is given by

D2 =
∑
n1

A,n2
A

p
(
n1

A, n2
A

)
ln

p
(
n1

A, n2
A

)
p
(
n2

A, n1
A

) , (17)

where n1
A and n2

A refer to two consecutive values of nA in the
time series which is analyzed. Since the case where n1

A = n2
A

clearly does not contribute to D2 and we consider elementary
reactions, n2

A = n1
A ± 1 is the only possibility. After renaming

n1
A by nA, we obtain

D2 =
N−1∑
nA=0

p(nA, nA + 1) ln
p(nA, nA + 1)

p(nA + 1, nA)

+
N∑

nA=1

p(nA, nA − 1) ln
p(nA, nA − 1)

p(nA − 1, nA)
, (18)

which can be rewritten as

D2 =
N∑

nA=1

[p(nA − 1, nA) − p(nA, nA − 1)] ln
p(nA − 1, nA)

p(nA, nA − 1)
.

(19)

Note that D2 depends on the quantity J(nA − 1 → nA)
= p(nA − 1, nA) − p(nA, nA − 1), which has the interpretation
of the local current between nA − 1 and nA in discrete time.
By going to the level of description with the full information
(nA, nB, nC) for which the evolution is Markovian, we obtain

p(nA − 1, nA) − p(nA, nA − 1)

=
∑
nB,nC

[p({nA − 1, nB + 1, nC}, {nA, nB, nC})

+p({nA − 1, nB, nC + 1}, {nA, nB, nC})
−p({nA, nB, nC}, {nA − 1, nB + 1, nC})
−p({nA, nB, nC}, {nA − 1, nB, nC + 1})],

where it is understood that the sum over nB and nC is done
with the condition nB + nC = N − nA. This sum can be written
as

p(nA − 1, nA) − p(nA, nA − 1)

= nA

pA

∑
nB,nC

(pBk−1 + pCk3

−pA(k1 + k−3))pst (nA, nB, nC). (20)

In view of Eq. (6), the term in the parenthesis is zero in the sta-
tionary state, therefore, D2 = 0 for this model with partial in-
formation. Alternatively, one can also show that D2 = 0 from
the following argument: In a steady state in 1D, the local cur-
rent J must be global. It is then equal to J = limt → ∞〈nA(t)〉/t,
which is zero because nA is stationary. Therefore, D2 is zero
as shown in the inset of Fig. 2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ln(k
1
/k

1
eq)

E
nt

ro
py

 p
ro

du
ct

io
n 

ra
te

0 1 2 3 4
0

2

4

6

x 10
−4

ln(k
1
/k

1
eq)

D
m

FIG. 2. Entropy production rate (in units s−1) as function of ln(k1/k
eq

1 ), as
estimated from D2 (diamonds) using full information together with the ana-
lytical expression from Eq. (7) (solid line). The total number of particles is
N = 5, the length of trajectory is n = 4 × 107, and the rates (in units s−1)
are k−1 = 0.3, k2 = 0.9, k−2 = 0.4, k3 = 0.5, and k−3 = 0.2. In the inset, D2
(circles), which is zero, D3 (plus), D4 (stars), and D5 (triangles) are shown
as function of the same log-ratio when only partial trajectory information is
used.

In the case (a), the system appears stationary and the dis-
tribution of nA is given by the classical binomial distribution:

p(nA) =
(

N

nA

)
p

nA

A (1 − pA)N−nA . (21)

Thus, there is no possibility to suspect the existence of a
current towards B or C or between B and C since we know
nothing of these chemical species, in fact from a chemistry
point of view, all evidences point towards equilibrium. And,
yet the system is out of equilibrium, and remarkably this
method can detect it. Since the coarse-grained dynamics is
non-Markovian in this case, d3, d4, d5, . . . obtained from the
trajectory of the nA(t) trajectory only, are non-zero and differ-
ent from each other, because they contain information about
higher correlations of the time series. This reveals that the
original system is not in equilibrium. We show in Figure 1
how the various estimates of the entropy production vary
as the length of the trajectory n increases. As mentioned in
Sec. II, when full information is available, we obtain for D2

a plateau corresponding to the expected value of the entropy
production rate calculated using Eq. (7) (solid line). In the
case of partial information, there is also a convergence of D3,
D4, and D5 as function of n but the convergence is slower than
for D2 (the plateau occurs at larger values of n).

In Fig. 2, we show these estimators as a function of k1,
keeping all the other rates fixed. As mentioned above, the
thermodynamic driving force in this model is the affinity A
= ln (k1k2k3/k−1k−2k−3), which can be written as ln(k1/k

eq

1 ),
where k

eq

1 represents the equilibrium value of k1. Similarly
in Fig. 3 where k2 is varied instead of k1, the same driving
force is written as ln(k2/k

eq

2 ). The exact entropy production
rate grows monotonously as function of this driving force in
both cases. However, the estimators vary monotonously when
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FIG. 3. Entropy production rate (in units s−1) as function of ln(k2/k
eq

2 ), as
estimated from D2 (diamonds) using full information together with the ana-
lytical expression from Eq. (7) (solid line). The total number of particles and
trajectory length is the same as in Figure 2 while the rates (in units s−1) are
k1 = 1.2, k−1 = 0.9, k−2 = 0.4, k3 = 0.5, and k−3 = 0.2. In the inset, D2
(circles), which is zero, D3 (plus), D4 (stars), and D5 (triangles) are shown
as function of the same log-ratio when only partial trajectory information is
used.

k2 is varied, but do not when k1 is varied as shown in the inset
of Figures 2 and 3.

For the case (b) and (c), we consider again trajectories
with full information of the form (nA(t), nB(t)) but we assume
a finite resolution, either in particle number or in time. For
case (b), we bin the particle numbers into a variable num-
ber of bins, which affects both the relative entropy and the
characteristic time τ . As seen in the inset of Fig. 4, the es-
timate of the dissipation rate using coarse-grained trajecto-
ries is smaller than the exact value when there are less bins
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FIG. 4. Relative entropy D2 as function of the ratio τ /�t, where �t rep-
resents the duration over which the data is coarse-grained in time. Circles
correspond to a system with 50 particles while stars correspond to a system
with 5 particles. In the inset, the estimate of entropy production rate is shown
as function of the number of bins used to coarse-grain the particle numbers
in a system of N = 50 particles. In both figures, the solid line represents the
expected value of relative entropy.

than particles while the exact value is recovered when there
are more bins than particles. We observe a sharp transition
between both regimes. In case (c), we use trajectories sam-
pled at a finite resolution or frequency 1/�t and we keep only
one point of the trajectory within a bin of size �t. As seen in
Fig. 4, this coarse-graining leads to a reduction of the esti-
mated entropy production except in the limit of high sampling
frequency where the exact expected value is recovered. We
also note that simulations with different N can be rescaled
indicating that in this example only the ratio of the character-
istic jump time τ to the sampling time �t matters. This reduc-
tion of the entropy production varies smoothly with the degree
of coarse-graining, in contrast to the case of coarse-graining
via decimation over fast states where the network topology
matters.26

IV. APPLICATIONS TO NONLINEAR CHEMICAL
REACTIONS

Finally, we discuss the estimation of dissipation from
fluctuations in nonlinear chemical reactions. We start
with the well-known example of Schlögl’s trimolecular
reaction:12, 27, 28

A
k1
⇀↽
k−1

X, 3X
k2
⇀↽
k−2

2X + B, (22)

where A and B represent two chemostats. We denote by nX

the particle number of the chemical species X. We recall that
the corresponding concentration [X] is 〈nX〉/� in terms of
the extensivity parameter �. In a certain range of parame-
ters, the macroscopic equations for [X] exhibit bi-stability,
which means that two solutions exist for [X]. In contrast, at
a stochastic level, the concentration interpolates between low
and high concentrations. This model is characterized by the
following transition rates:

wA(nX, nX + 1) = k1[A]�,

wA(nX, nX − 1) = k−1nX, (23)

wB(nX, nX + 1) = k−2[B]nX(nX − 1)/�,

wB(nX, nX − 1) = k2nX(nX − 1)(nX − 2)/�2, (24)

where the superscript on the transition rates indicates which
chemostat is involved in the transition and [A] and [B] are the
concentration of chemostats A and B.

When no knowledge of the chemostats and of their inter-
action with the system of interest is assumed, we expect again
D2 = 0 because D2 is sensitive to the average current of the
variable nX which should be zero. Intuitively, one can under-
stand this from the following argument: if you exchange the
labels of the chemostats A and B, the net average current of nX

due to interaction with A and B will be reversed, which means
that such a current must be zero if A and B are not identi-
fied. To see this more precisely, one can consider the coarse-
grained dynamics of the variable nX which is characterized by
the following lumped transition rates:29

w(nX, nX ± 1) =
∑

ν=A,B

wν(nX, nX ± 1)P ν
st (nX)

Pst (nX)
, (25)
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where P ν
st (nX) is the stationary distribution of the variable nX

for the mechanism ν = A, B. In this stationary state, these
distributions obey a detailed balance condition for each value
of ν separately:

P A
st (nX)wA(nX, nX − 1) − P A

st (nX − 1)wA(nX − 1, nX) = 0,

(26)

and

P B
st (nX)wB(nX, nX − 1) − P B

st (nX − 1)wB(nX − 1, nX) = 0.

(27)

Using the equations above, it is then a simple matter to
check that the local current defined by J (nX → nX − 1)
= Pst (nX)w(nX, nX − 1) − Pst (nX − 1)w(nX − 1, nX) is
zero. As a result D2 is zero, because the relation between
this local current and D2 is similar to that of Eq. (19). Alter-
natively, one can also use here the argument of probability
conservation and stationarity to show that the local current
must be global and then it must be zero due to stationarity.

In contrast with the example of the three state enzymatic
model studied earlier, the dynamics of this model is Marko-
vian and at equilibrium while the dynamics of the three state
enzymatic model was non-Markovian and non-equilibrium in
the case of partial information. This difference of behavior
may at first appear surprising but it is not when realizing that
the chemostats in the Schlögl model are ideal. This means
that they contain an infinite number of particles. If instead
they would contain a finite number of particles, the interac-
tion between the system and the chemostats would leave a
memory that the transition has occurred. This would then im-
ply a non-Markovian evolution as in the case of the three state
enzymatic model. In the end, in the present case, the Marko-
vian nature of the dynamics together with the fact that D2 = 0
implies that for any m, Dm = 0. This is indeed what we con-
firm numerically when the length of the trajectory goes to
infinity as shown in Figure 5. Thus, at this level of descrip-
tion, the system is in equilibrium, while it would not be if
the transitions involving the chemostats were properly iden-
tified, unless of course detailed balance holds, which occurs
at the concentration [X]eq = k1[A]/k−1 = k−2[B]eq/k2. This is
an example, where the lack of identification of the chemostats
represents a form of coarse-graining which has a dramatic im-
pact in this 1D model since it prevents the identification of
the NESS. The same point has been nicely illustrated before
using linear Langevin equations.30 In this work, a Langevin
equation is considered, which describes the dynamics of one
particle in contact with two different thermostats. There are
two friction coefficients and two white noises of different am-
plitudes. It is straightforward to show that there is an effective
Langevin equation for this problem with equilibrium dynam-
ics. Therefore, such a model is also a non-equilibrium one but
there is no way to see it at the coarse-grained level.

This failure to identify the NESS does not occur, how-
ever, when the model includes at least two variables even
when chemostats are still unidentified. In some sense, it is
a topological issue, related to the Schnakenberg construction
for NESS, according to which the entropy production in a
NESS can be decomposed into cycles.20 Even in a non-linear
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FIG. 5. Estimate of EPR using D2 (stars), D3 (triangles), and D4 (plus) in the
Schlögl’s model as function of the length of the trajectory n. The parameters
in that figure are k1[A] = 0.5, k−1 = 2, k2 = 1, k−2 = 1, the value of the
concentration of the B chemostat is [B] = 3, and the extensivity parameter is
� = 10.

1D model, there is no possibility to construct such a cycle,
hence the entropy production is zero and the model is at equi-
librium. The only possibility to create a NESS in a 1D Marko-
vian model is to use periodic potentials as discussed exten-
sively in the literature on ratchet models.31, 32 The situation in
2D is very different in that respect. To illustrate this point, let
us look at a 2D model, namely, the reversible Schnakenberg
model,13 which may be viewed as a variant of the Brusselator
model,33 studied more recently in Refs. 34 and 35:

X
k1
⇀↽
k−1

A, B
k2
⇀↽
k−2

Y, 2X + Y
k3
⇀↽
k−3

3X, (28)

where A and B are chemical species present in chemostats,
and X and Y are species with fluctuating particle numbers nX

and nY. This model presents either a monostable phase or a
limit cycle depending on the chemical potential difference
between A and B. When a chemical potential difference is
present, we find that one can detect the dissipation already at
the level of D2, because a stationary current exists in the vari-
ables nX and nY. This stationary current produces a circulation
in the plane of (nX, nY), in other words, a limit cycle.34, 35 In
fact, a similar effect is present already with two linearly cou-
pled Langevin equation where the two degrees of freedom are
coupled to two thermostats at different temperatures. For such
a model, the reduction from a two variables description to a
one variable description36 and the conditions for obtaining a
limit cycle37 have been studied analytically recently.

For the reversible Schnakenberg model, we can compare
the estimate of dissipation using the method presented in this
paper, with that obtained using the Lebowitz-Spohn func-
tional. Assuming the transition rates are given, the mean en-
tropy production rate can be obtained from this functional,38

which is defined as

Z(t) =
∫ t

0
dt ′

∑
n

δ(t − tn) ln
w(cn, cn−1)

w(cn−1, cn)
, (29)
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FIG. 6. Estimate of EPR in the nonlinear Schnakenberg model as function of
the trajectory length n for various estimators (symbols) together with the ex-
act value calculated using Eq. (29) (solid lines) for the same trajectories. The
exact expected value of the EPR is recovered from D2 using full information
(stars). With partial information, one finds that D2 (circles) goes to zero as
n increases while other estimators such as D3 (triangles) go to a finite value.
The parameters are [A] = 0.2, [B] = 0.1, and � = 10. The rates (in units s−1)
are k1 = 1.5, k−1 = 1, k2 = 1.2, k−2 = 0.2, k3 = 1, and k−3 = 0.3.

where tn is the time of transition from state cn−1 to cn. This
quantity can be evaluated on the same trajectory used to de-
termine the dissipation with D2 and one obtains from it the
EPR by evaluating limt→∞ 1

t
〈Z(t)〉. As shown in Figure 5, the

agreement is very good confirming that the method is able to
recover the expected value of the dissipation in this nonlinear
example. Finally, as we did with the three states enzymatic
model and with Schlögl model, it is natural to ask how this
model performs if only partial information is available.

As we argued before, the specificity of the results ob-
tained for the Schlögl model is related to the 1D nature of
the model and the ideality of the reservoirs to which the ob-
servable of interest is coupled. In view of this, we should
expect a behavior closer to the three states enzymatic model
for the Schnakenberg model. This is indeed what we find. In
Figure 6, one can see that D2 tends to zero when partial in-
formation is used while D3 reaches a non-vanishing plateau
at large n, just as in the three states enzymatic model with
partial information. This shows that for this nonlinear ex-
ample, our method is still able to distinguish equilibrium
from non-equilibrium fluctuations. It is remarkable that this
can be done using only partial information of one chemical
species.

V. CONCLUSIONS

In this paper, we have illustrated a general method which
is able to infer the amount of dissipation present in the fluctua-
tions of a chemical system. There are no specific limitations to
the complexity of the chemical system, which can involve an
arbitrary number of linear or non-linear reactions; for simplic-
ity, we have illustrated the principles of the method with the
Schlögl and Schnakenberg models. Even more remarkable is
the fact that the method is non-invasive and does not require

any knowledge of the underlying dynamics, which makes it
ideally suited for applications in chemistry or biology. Since
fluctuations of a chemical system can be viewed as a form of
noise, one can say that the method is able to identify the nature
of the noise, or at least to extract some relevant information
contained in the noise.

The method requires in principle a detailed information
about the fluctuations, which may be difficult to obtain in
practice. To address this issue, we have studied the robust-
ness with respect to a reduction in the amount of informa-
tion present in the input data, a process which we call coarse-
graining. We have considered the effect of reducing the num-
ber of recorded chemical species and the effect of a limited
resolution either in particle number or in time. We have shown
that in such situations, the method is still able to provide
useful information. In particular, it can systematically dis-
tinguish equilibrium fluctuations from non-equilibrium ones,
even when traditional methods fail, as shown in the example
of the three-state enzymatic network. When applied to biolog-
ical systems, it could serve as a means of investigation of ac-
tive biological systems, to be used in connection with micro-
rheology techniques.2 In principle, the method could provide
more than just a yes/no answer to the question, to whether the
system is in equilibrium, since it can provide an estimate of
the dissipation. However, it is likely that accurate estimates
will be more difficult to obtain than a yes/no answer, since
the quality of the estimation depends crucially on the quantity
and on the quality of the input data.

In this paper, we have considered various dynamics in-
volving a finite number of states as in the work of Roldán
and Parrondo.8 It would be interesting to apply this method to
continuous data sets, which would make closer connections to
the original work of Gaspard11 and would be useful for many
applications to biological or chemical systems. Such an exten-
sion has already been achieved in an experiment using manip-
ulated colloids which can be described by a linear Langevin
equation.39 It remains to be seen whether this method can be
exploited to study more complex experimental systems such
as biological ones.

These applications ideally should involve a small chem-
ical or biochemical system in which the fluctuations of con-
centration of some chemical species can be measured with a
high temporal resolution. The technique of fluorescence cor-
relation spectroscopy is a possible candidate for experiments
of this kind since it allows to perform measurements in a small
volume, which is nowadays easily done in a microfluidic de-
vice, with the possibility of a good temporal resolution at the
single molecule level. We hope that our work could motivate
experiments along this line.
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