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Geometric depolarization in patterns formed by
backscattered light
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We formulate a framework to extend the idea of Berry’s topological phase to multiple light scattering, and

in particular to backscattering of linearly polarized light.

We show that the randomization of the geometric

Berry’s phases in the medium leads to a loss of the polarization degree of the light, i.e., to a depolarization.
We use Monte Carlo simulations in which Berry’s phase is calculated for each photon path. Then we average
over the distribution of the geometric phases to calculate the form of the patterns, which we compare with

experimental patterns formed by backscattered light between crossed or parallel polarizers.

Society of America
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The transport of light through human tissues is one
of the most promising techniques to detect breast
cancer, for instance, in a noninvasive way. For medi-
cal imaging applications, it is important to extract
the information contained not only in the intensity
but also in the polarization of backscattered light.
This extraction is not easy in general because of
the complexity of vector-wave multiple scattering.
In this Letter we study a simple experiment, in
which polarized light is backscattered from a diffuse
medium. In these conditions a fourfold symmetry
pattern can be observed between crossed polarizers
that was first interpreted qualitatively by Dogariu and
Asakura.! Recently more quantitative approaches
were developed by use of Mueller matrices.>® In this
Letter we propose an alternate approach, which is
quite simple to implement because it is not based
on a vector radiative-transfer method as generally
used in the literature. Instead our approach is based
on the notion of geometric phase, which was intro-
duced by Berry* in his interpretation of experiments
showing optical activity in a helically wound optical
fiber.” Berry’s geometric phase in these references
is the phase acquired by light when its direction
of propagation is slowly changed on a sphere of di-
rections (i.e., in momentum space). This geometric
phase is equal to the solid angle on the sphere of
wave-vector directions. A different geometric phase,
called Pancharatnam’s phase is the phase acquired
by paraxial polarized light wave when its polariza-
tion undergoes some transformation on the Poincaré
sphere. That geometric phase is equal to half the
solid angle on the Poincaré sphere.® So far the ap-
plications of geometric phases to polarized light have
been limited to situations in which light is traveling in
a homogeneous medium. In this Letter we use only
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the first geometric phase, Berry’s phase, and apply
it to multiple light scattering in a random medium.
Before presenting our application of Berry’s phase,
which follows closely and extends the recent Ref. 7, we
discuss the cross-shaped patterns, using the standard
Stokes formalism to make a connection with previous
work. %3

We assume that linearly polarized light is incident
upon a medium and that the direction of the incident
beam is normal. The intensity and polarization of
the backscattered light are completely characterized
by Stokes parameters (I, @,U, V). Transformations
of the Stokes parameters are represented by 4 X 4
Mueller matrices. Scattering matrix S is such a
matrix and contains contributions from all orders
of scattering.® The dependence of the outgoing
Stokes parameters as a function of azimuthal angle
¢ measured about the incident beam direction can
be obtained by a product of the appropriate Mueller
matrices. We find that the outgoing intensities in
the backscattered direction and between parallel
(perpendicular) polarizers are®

1
I, = 2(2511 + S33 — Sa2)
1
- Z(Szz + Ss3)cos 4¢ 1
1
I = 2(2511 — Ss3 + So2) — S1o

X cos 2¢ + %(Szz + Sss)cos 4¢ (2)

corresponding to Stokes parameters I = I, + I and
€ = Iy — I,. Equations (1) and (2) are valid for
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any distribution of randomly oriented particles with
a symmetry plane. Note that Eq. (1) implies that
the cross-polarized pattern has a fourfold symme-
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E(t = s) =— cos[¢ + Q(s)n(s)
+ sin[¢ + Q(s)]b(s), (6)

try, whereas Eq.(2) implies an additional twofold
symmetry in the copolarized pattern because of the
term proportional to Si3. In the particular case
that is satisfied in multiple light scattering,® when
S = Sn diag(l, C, C,D), with C = ng/Sn and
D = S44/S11, Egs. (1) and (2) take the simple form

1 Ip(1 — C cos 4¢), (3)

I, 2

I = %10(1 1 C cos 40), @)

corresponding to outgoing Stokes parameters I = I, =
S11and @ = CI cos 4¢p. Note that a cross is expected
now in both polarization channels and that C measures
the contrast of this pattern.

Let us now discuss the origin of the depolariza-
tion of polarized light. For Rayleigh scattering, the
(linear) polarization vector after scattering, E/, is
E =k’ X (E X K'), in terms of the polarization vector
before scattering E and the scattered wave vector k’.
This implies that E evolves by parallel transport in
the limit of small scattering angles and diffuses on
the sphere of wave-vector directions until the memory
of the polarization has been lost. This depolarization
has a characteristic length [, equal to 2.8/, where [
is the elastic mean free path of the light.” As the
anisotropy in the scattering increases, [, approaches
the transport mean free path *.1'" Here we assume
forward-peaked scattering because it applies to many
biological tissues, and because in this case there is a
clear analogy between Berry’s geometrical phase in
optics and the twist and writhe of polymers.” The
hypothesis of forward-peaked scattering nicely satis-
fies the requirement for the Berry’s phase of a slow
variation of the circuit in momentum space® and
corresponds to a special recently investigated limit of
the radiative-transfer equation.!?

Let us consider a path of light, which we assume to be
normally incident on a semi-infinite random medium.
Following Ref. 4, we express polarization vector E in
a basis of two vectors (n, b) normal to tangent vector
u (if the path is regular enough, the Frénet frame is a
possible choice), as shown in Fig. 1:

E@) = c1(t)n() + ca(t)b(2), (5)

where ¢ is a parameter that goes from 0 to s along
the path. Let us call ¢ the angle between E and n at
t =0, so c2(0)/c1(0) = tan ¢. Since the polarization
evolves by parallel transport, ¢; = 7cg and ¢cg = —7cy,
where 7 denotes the torsion on the trajectory, as found
many years ago by Rytov.® In the backscattering ge-
ometry, n(¢t = s) =—n(t = 0) and b(t = s) = b(¢ = 0);
therefore we find that the polarization vector at the
end of the path is

where ) (s) is a geometrical phase equal to the oppo-
site of the integral of the torsion between # = 0 and
t = s modulo 477. In the analogy between a path of
light and a semiflexible polymer, the twist of the path
is zero for light (it would be nonzero only in a chiral
medium), and the writhing angle is precisely (0. This
writhe is a real value since the path is open, and that
real value is equal to the algebraic area of a random
walk on a unit sphere, with the constraint that the
path goes from the north pole to the south pole in the
backscattering geometry. From Eq. (6), we find that
the output intensity after the light has gone through
an analyzer crossed with respect to the direction of the
incident polarization is proportional to sin%(2¢ + Q).
Because the medium is random, this intensity must be
averaged with respect to all paths:

I,(R)= [P’(s,R)ds(sinQ[qu + Q(s))), (7

where P'(s, R) is the distribution of the path length
for a given distance to the incident beam R and (...)
denotes the average over paths of length s. Using
the identity 2 sin?(2¢ + Q) = 1 — cos(4¢)cos(2Q)) +
sin(4¢)sin(2Q)) and the fact that (sin(2Q)) = 0, because
the distribution of Q) is even, we write Eq. (7) in the
form of Eq. (3) with IH(R) = [P/(s, R)ds and

1

C®) = 1R

[ P'(s, R)ds{cos[20(s)]). (8)

The factor cos(2()) in Eq. (8) means that the contrast
results from grouping pairs of paths of opposite geo-
metrical phases, and the sum over s means that the
phases of any other paths are uncorrelated. Inter-
estingly, a similar randomization of the phase occurs
in the theory of magnetoconductance of Anderson
insulators.'*

To evaluate the distributions of ) for fixed s,
P(s, Q) shown in Fig. 2, we use a Monte Carlo algo-
rithm originally developed for semiflexible polymers.
Random paths are generated with an exponential
distribution of path length with a characteristic step
equal to [. The incident photons are normal to the
interface, but when light is exiting the medium all
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Fig. 1. Representation of a typical path in a semi-infinite
random medium in backscattering. The Frénet frame con-
sists of tangent u, normal n, and binormal b vectors. R
denotes the distance between end points, ¢ is the initial
angle between polarization vector E and normal n, and
is the geometric phase.
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Fig. 2. Distribution of geometric phase () for different val-
ues of path length s and in the inset variance of the distri-
bution as a function of s/I*.
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Fig. 3. Contrast as a function of R: the crosses were ob-
tained from Monte Carlo simulations by use of Eq. (8),
and the squares are experimental values, obtained from
an analysis of Stokes parameter Q.

the outgoing angles of the emergent photons are ac-
cepted. The paths can be generated for an arbitrary
ratio of [*/I. We calculated the geometric phase by
closing the paths on the momentum sphere with a
geodesic.” Because of this closure the distribution
of Q for short paths, s << [, is peaked at zero, as
is also found for planar random walks (Levy’s law).
For long paths, s >> 1", the distribution of O widens
until the polarization is completely lost. In this
regime the distribution P(s, ) should be Gaussian
according to the central limit theorem. Indeed, we
have confirmed this point by numerically evaluating
the moment of order four of the distribution. Fur-
thermore, the variance of the distribution, which
was quadratic for s << [*, becomes linear for s >> [*,
as seen from the inset of Fig. 2. This means that
P(s, Q) = \/lp/ﬂ's exp(—Q21,/s), which implies that
(cos 2Q(s)) = exp(—s/l,). In Fig. 3, we show the
corresponding curve for the contrast of the pattern
calculated from Eq. (8), together with experimen-
tal points, which we obtained by averaging Stokes
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parameter @ of an image along two perpendicular
directions, thereby suppressing a possible contribution
in cos(2¢) present in Eq. (2). In the experiment a
colloidal suspension of latex particles of negligible
absorption (diameter 0.5 um, wavelength A = 670 nm)
was used, and the sample was ~8.8]* thick. The
value of anisotropy parameter g in the simulation was
chosen to match the experimental value g = 0.82. In
this figure one can see that the contrast decreases
exponentially as a function of distance R with a
characteristic distance of the order of [, = [*, which
agrees with both theory and experiments.!®!! In the
central region of the pattern, low-order scattering is
dominant, as was confirmed numerically. This could
explain the discrepancy between experiments and
simulations in this region, since our model only treats
low-order scattering events in an approximative way.

To conclude, we have developed a simple theo-
retical framework to extend the idea of Berry’s
topological phase to the backscattering of light in a
multiple scattering medium. The randomization of
the geometric phases is the process that leads to
depolarization, which is most clearly seen when the
scattering is peaked in the forward direction. We
have substantiated our theory with experiments. We
hope that our work will motivate further studies on the
role of geometric phases in the transport properties of
polarization in random media.
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