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We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on
polysaccharides. To mimic physiological conditions, we treat this process as an open chemical
network by assuming some of the polymer concentrations fixed (chemostatting). We show that
three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states,
and continuous growth states. We dynamically and thermodynamically characterize these states and
emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing
them. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4938009]

I. INTRODUCTION

Biological systems use large and branched chains of
basic sugars, called polysaccharides, to store energy.1 Glucans
such as glycogen and starch are polysaccharides whose
building blocks are D-glucose monosaccharides. Despite the
apparent simplicity of their constituents, their metabolism
involves several chemical steps, each performed by a specific
set of enzymes.2 Interestingly, some of these catalysts
lack specificity regarding the reaction they catalyze or
the substrates they act on.3,23–32 An example is provided
by (1 → 4)-alpha-D-glucans2,4–6 (EC 2.4.1.25), also called
D-enzymes, which act on pairs of glucans regardless of their
size.7 Specifically, D-enzymes catalyze the transfer of groups
of glycosyl residues from a donor glucan to an acceptor
glucan.4,5 Experimental evidences highlight the presence of
bonds between glycosyl residues which are not cleaved by
D-enzymes4—at least not over physiological time scales.7

These bonds are called forbidden linkages.4 In this way,
D-enzymes transfer segments of glucan chains containing
one or more forbidden linkages, and the transfer of segments
containing one forbidden linkage are the most probable.4 Also,
each glucan chain is characterized by a reducing-end glucose
which is not transferred by D-enzymes.4,7 Hence, glucans
made of just the reducing end can act only as acceptor in the
transfer.

Qualitatively, D-enzymes process medium-size glucans
by disproportionating them into unit-size and big-size
glucans.5 Since their transfers reactions are neutral ener-
getically,7,8 entropy is the main driving force in this system. In
closed conditions, this system evolves towards an equilibrium
state maximizing the entropy.7,9

In this paper we consider a simplified kinetic description
of the D-enzyme’s action on glucans, which we treat as
a chemical network. Since metabolic processes should be
thought of as part of an open system continuously fed from

a)riccardo.rao@uni.lu
b)massimiliano.esposito@uni.lu

the environment, we mimic these physiological conditions by
introducing chemostats (i.e., species whose concentrations
are kept constant by the environment). Our goal is to
characterize the dynamical and thermodynamical implications
of treating the action of the D-enzymes on glucans as an open
chemical network. In the framework of deterministic chemical
networks endowed with mass action kinetics, we prove
that chemostatting can induce three different types of long-
time behaviors: equilibrium, non-equilibrium steady state,
and continuous growth. The equilibrium state corresponds
to the stationary concentration distribution in which the
concentration currents along each reaction pathway vanishes
(detailed balance property10). Non-equilibrium steady states
refer to stationary distributions violating detailed balance.
Hence, contrary to equilibrium states, a continuous and
steady flow of mass circulates across the network. Finally,
the continuous growth regime we observed corresponds
to a non-stationary state characterized by continuous and
steady flow of mass entering the network and resulting in
its continuous growth. We emphasize the dynamical and
thermodynamical roles of conservation laws and emergent
cycles in identifying the chemostatting conditions leading to
these states. We are thus able to confirm the general relation
between the number of chemostatted species and the number
of independent thermodynamical forces—or affinities—found
in Ref. 11. Despite the simplicity of our description, the
closed system results found in Ref. 7 are reproduced and
the qualitative disproportionating behavior of D-enzymes5 is
captured by our (chemostatted) open system description.

The plan of the paper is as follows: in Sec. II, the kinetic
model is established and the related rate equation description
for the concentration of polysaccharides is introduced. In
Sec. III, the chemostatting conditions leading to non-
equilibrium steady states rather than equilibrium ones are
found. For this purpose, both the conservation laws of the
dynamics and the emergent cycles of the network are analyzed.
The dissipation of the non-equilibrium steady state is also stud-
ied. The network’s conservation laws identified in Sec. III A
are used in Sec. IV to derive the steady-state concentration

0021-9606/2015/143(24)/244903/11/$30.00 143, 244903-1 © 2015 AIP Publishing LLC
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distributions for different numbers of chemostats. The explo-
sive asymptotic behavior is described in Sec. V. Conclusions
are drawn in Sec. VI. Some technical derivations and proofs
are provided in Appendices.

II. THE KINETIC MODEL

The action of D-enzymes is modeled as follows (see also
Fig. 1). Glucans are treated as polymers whose monomers
represent single transferable segments. Hence, each glucan
is identified by its number of monomers, or equivalently by
its monomeric mass. The enzymatic steps performed by the
D-enzymes in order to achieve the transfer are not explicitly
described—they are coarse-grained—, and we describe the
interaction between two polymers of mass n and m as a
mass-exchange process:12

(n) + (m) κnm−→ (n + 1) + (m − 1), for n ≥ 1, m ≥ 2, (1)

where κnm denotes the related coarse-grained rate constant.
Transfers of oligosaccharides longer than one monomeric unit
are less probable4 and are not considered in our description.
We take into account the presence of non-transferable units
by imposing the size of the donor glucan (m) to be greater
than one.4,7

Let us note that each reaction is reversible because the
backward path is already included in (1) (it is realized by
replacing n → m − 1 and m → n + 1 in the above expression).
Furthermore, the constraint on the minimal size of the donor
molecules imposes that m ≥ 2. Since we describe the glucans
as linear polymers, and since D-enzymes do not discriminate
the size of the polymers, we assume a constant kernel for
the reactions: κmn = κ, ∀n ≥ 1,∀m ≥ 2. This assumption
is based on the evidence that the free-enthalpy release
resulting from any reaction is almost vanishing.7,8 Indeed,
for any bond cleaved, a new one of the same kind will be
formed.

Assuming a large and well stirred pool of interacting
polymers, the evolution of the system is well described
by reaction rate equations.12 According to this mean-field
description, the molar concentration of polymers of mass
k at time t, Zk = Zk(t), satisfies the following first order
differential equations:

Żk =
1
2


n≥1
m≥2

∇knm
�
J+nm − J−nm

�                          
≡Jnm

, for k ≥ 1. (2)

The 1
2 factor in front of the summation takes into account

that summing over all n ≥ 1 and m ≥ 2 includes every

FIG. 1. (a) The typical monomer-exchange reaction describing the action of
D-enzymes on glucan chains. (b) The attachment of free monomers to other
species is not allowed.

reaction pathway twice.13 ∇knm represents the element of
the stoichiometric matrix related to the species of mass k and
to the reaction involving an acceptor and a donor polymer
of mass n and m, respectively. The reaction scheme in (1)
implies that

∇knm = δkn+1 + δkm−1 − δkn − δkm, (3)

where δ
j
i represents the Kronecker delta. Assuming a mass

action kinetics, the forward (denoted by +) and the backward
fluxes (−) can be written as

J+nm = κZnZm, J−nm = κZn+1Zm−1, (4)

where Zn denotes the concentrations of the polymers of size n.
To simplify the following discussion, we will use the Einstein
summation notation: upper indexed quantities represent
vectors, lower indexed ones covectors, and repeated indexes
imply the summation over all the allowed values for those
indexes (1 ≤ n ≤ nmax and 2 ≤ m ≤ mmax, or 1 ≤ k ≤ kmax,
where nmax, mmax, and kmax are finite in closed systems but
infinite in open ones). To avoid confusion, exponents will
always act on parentheses (e.g., (a)n denotes the quantity a to
the power n).

The rate equations (2) assume the following form when
the expressions for both stoichiometric matrix (3) and fluxes
(4) are considered

Ż1 = κZ
�
Z2 − Z1�

+ κZ1Z1,

Żk = κZ
�
Zk+1 − 2Zk + Zk−1�

+ κZ1 �
Zk − Zk−1�

, for k ≥ 2,

(5)

where Z ≡ kmax
k=1 Zk denotes the total concentration. The

second term in the right hand side of (5) arises from the
constraint that the donor species cannot be monomers14 (see
Fig. 1(b)).

To model the open system we now assume that the
environment keeps the concentrations of some species
constant by refilling the consumed ones and eliminating the
produced ones, see Fig. 2. We call these species chemostats15

and we denote them with the indices ky ∈ ΩY, where ΩY ⊂ N
represents a subset of all species. The remaining (variable)
species are explicitly denoted by kx.

By definition, the chemostats’ concentrations must remain
constant, Żky = 0. The rate of chemostatted molecules
consumed by the reactions in the network must therefore
be balanced by the rate of chemostatted molecules in-
jected/rejected from the system. The rate of injection/rejection

FIG. 2. Pictorial representation of a reaction involving a chemostat. When a
reaction produces a chemostat (here a dimer), the environment extracts one
molecule of this species from the system (dotted light green reaction). On
the other hand, when a chemostat reacts, a new molecule is injected into the
system (dashed dark green reaction).
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of the kyth chemostat is quantified by the external currents,11

whose expression is

Iky =
1
2
∇ky
nm

�
J+nm − J−nm

�

= κZ
�
Z2 − Z1�

+ κZ1Z1 if ky = 1

= κZ
�
Zky+1 − 2Zky + Zky−1�

+ κZ1 �
Zky − Zky−1�

if ky ≥ 2. (6)

III. STEADY STATES: CONSERVATION LAWS,
CYCLES, AND DISSIPATION

Three different types of long-time behaviors have been
identified for our kinetic model: equilibrium, non-equilibrium
steady state and continuous growth. We start by focusing
on the chemostatting conditions leading to equilibrium or
non-equilibrium steady states. The existence and uniqueness
of the steady state are currently a priori assumed.

Closed systems always reach an equilibrium steady
state16 defined by Żkx

eq = 0,∀kx and Jnm
eq = 0,∀n,m. Their

dynamics is constrained by conservation laws,11,17,18 which
fully characterize the equilibrium concentration distribution.
Chemostatting generic chemical species may break these
conservation laws and may create chemical forces—also
called affinities.11 The appearance of affinities is directly
related to that of so-called emergent cycles, through which
the external chemical forces can act. In finite chemical
networks, if no emergent affinity arises from the chemostatting
procedure, the system will always relax to a unique
equilibrium state compatible with the chemostats and the
non-broken conservation laws.11,16 When emergent cycles—or
equivalently affinities—are generated, the system may evolve
towards a non-equilibrium steady state defined by ˙̄Z

kx
= 0, ∀kx

and J̄nm , 0 (non-equilibrium steady state quantities are
denoted by an overbar in the text). In Subsections III A–III C,
we analyze how the closed system’s conservation laws and
emergent cycles are modified by the gradual increase of
the number of chemostatted chemical species. In Subsection
III C, we relate these to the dissipation in the system.

A. Conservation Laws

Conservation laws denote the presence of physical
quantities which are conserved during the evolution of the
system, the so-called components. In general, they can be
identified from the cokernel space of the stoichiometric
matrix.11,17,18 Indeed, if lk ∈ coker∇, namely, if lk∇knm = 0,
the scalar lkZk is conserved

d
dt

�
lkZk

�
= lk Żk

=
1
2

lk∇knm
�
J+nm − J−nm

�
= 0. (7)

For the closed system, the equation leading to the
conservation laws is lk

n+1 − lkn = lkm − lk
m−1, for 1 ≤ n ≤ nmax

= kmax − 1 and 2 ≤ m ≤ mmax = kmax. It exhibits the following
solutions: l(1)

k
= α and l(2)

k
= α · k (where α is an arbitrary

constant, which is taken as one when expressing the
components), which correspond to the conservations of

the total concentration Z ≡ kmax
k=1 Zk and the total mass

M ≡ kmax
k=1 k Zk, respectively. Hence, kmax = M − Z + 1.

However, when the system is opened by setting
chemostats, the relevant stoichiometric matrix becomes the
stoichiometric submatrix of the variable species: ∇kx

nm. Also,
kmax = ∞. No matter what the sizes of the chemostatted
glucans are, neither the total concentration conservation law
lkx = α nor the total mass conservation law lkx = αkx survives
(i.e., they are not anymore elements of the cokernel space
of ∇kx

nm). We therefore say that the total mass and the total
concentration are broken conservation laws. Nevertheless,
when just one chemostat is present, ΩY ≡ {ky}, a new
conservation law emerges,

l(3)
kx
= α

�
kx − ky

�
. (8)

Hence, the system exhibits just one (net) broken conservation
law. It corresponds to the component

q = M − kyZ, (9)

which can assume any value in R and takes into account that
the total mass can change in the system only by multiples
of the chemostat mass, ky. In presence of more than one
chemostat, no conservation law survives.

The components derived in this section—M and Z for the
closed system and q for the network with one chemostat—will
be used to characterize the steady state distribution in Sec. IV.

B. Emergent cycles

A cycle represents a finite set of reactions which leave
the state of the network unchanged. Algebraically they are
represented as vectors cnm and they belong by definition to
the kernel space of the stoichiometric matrix (cnm ∈ ker∇):
1
2∇

k
nmcnm = 0.

The steady-state currents satisfy ∇knm J̄nm = 0 and can
always be written as linear combinations of cycles. The
cycle space of our polymers system is however infinite
dimensional and its complete characterization is of little use.
However, in order to characterize non-equilibrium steady
states only the emergent cycles—those cycles that may appear
when chemostatted species are introduced—are needed.11

Physically, they represent cyclic transformations leaving the
variable species kx unchanged, but which would change the
concentrations of the chemostats ky if they were not kept
constant and contribute to the external currents.

An emergent cycle (γnm) is thus defined by




1
2∇

kx
nmγ

nm = 0,
1
2∇

ky
nmγ

nm = ν
ky
γ , 0 for at least one ky,

(10)

where

ν
ky
γ


ky∈ΩY

denotes the amount of chemostats of mass ky

injected (minus sign) or rejected (plus sign) from the chemical
network during the transformation γnm. These quantities
cannot take arbitrary values, due to the constraints imposed
by the conservation laws of ∇knm. Indeed, for any conservation
law, l(i)

k
, a constraint of the following form holds:

l(i)
ky
ν
ky
γ = l(i)

ky
1
2∇

ky
nmγ

nm = 0. (11)
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Taking into account the total concentration l(1)
k
= α and total

mass l(2)
k
= αk conservation laws, derived in Sec. III A (the

emergent conservation law l(3)
k

is a linear combination of the
first two on the whole set of species indexes), we obtain the
following constraints:





ky ν

ky
γ = 0

ky kyν
ky
γ = 0

. (12)

Non-trivial solutions of this set of equations signal the
presence of emergent cycles, and thus of independent affinities,
which read11

Aγ =
1
2


nm

γnm ln

ky

(Zky)−∇nm
ky . (13)

The set of linearly independent solutions of (12) gives the
number of independent emergent cycles in the chemostatted
chemical network. If we normalize this set so to have the
smallest non-vanishing integer values for ν

ky
γ , these values

indicate the number of chemostatted species which are
introduced in or rejected from the system in precisely one
(emergent) cyclic transformation.

For less than three chemostats, only trivial solutions of
(12) exist and therefore no emergent cycle appears. For three
chemostats, we obtain one emergent cycle characterized by
the following normalized values for νky:

νky1 = ky3 − ky2,

νky2 = ky1 − ky3,

νky3 = ky2 − ky1,

(14)

where ky1, ky2, and ky3 represent the masses of the chemostats.
For any additional chemostat, we obtain an additional
emergent cycle, each characterized by its value for the
coefficients νky.

C. External currents and dissipation

We now show that at steady state, the emergent cycles
determine the external currents Īky and the entropy production
rate Σ.

We first observe that the steady-state external currents
Īky are in general linear combination of the coefficients ν

ky
γi

and must satisfy the same constraints (Eq. (12)). Indeed, the
steady-state equations in presence of chemostats,




1
2∇

kx
nm J̄nm = 0,

1
2∇

ky
nm J̄nm = Īky,

(15)

are equivalent to Eq. (10): the emergent cycles γnm are
substituted by the steady state currents J̄nm and the coefficients
νky by the steady-state external currents Īky. Thereby, if no
cycle emerges due to the chemostats, the steady-state external
currents Īky are vanishing, provided that the steady state exists.
The system is then at equilibrium.

The dissipation at steady state is intimately related to
the external currents.11 Indeed, the (non-negative) entropy
production rate for our chemical reaction network can be

TABLE I. Summary of the behaviors of our model for different numbers
of chemostats (ES stands for “equilibrium state” whereas NESS for “non-
equilibrium steady state”). The number of broken conservation laws and
independent affinities are also reported. The growth state occurs whenever
the concentration of the largest chemostat is larger than the concentration of
the smallest one: (Z ky larger ≥ Z ky1).

Number of
chemostats, sY

Broken c. laws,
b

Independent
affinities, a

Asymptotic
behavior

0 0 0 ES
1 1 0 ES
2 2 0 ES/growth
3 2 1 NESS/growth
4 2 2 NESS/growth

written as

Σ ≡ 1
2


nm

JnmR ln
J+nm

J−nm

= −

kx

ŻkxR ln
Zkx

Zkx
eq                                

≡ΣX

−

ky

IkyR ln
Zky

Zky
eq                              

≡ΣY

, (16)

where R is the gas constant. At the steady state, the
internal species’ contribution ΣX always vanishes. Hence,
the dissipation is characterized by the contribution due to the
chemostats ΣY, which is non-vanishing if the set of steady-state
external currents Īky is also non-vanishing. We also mention
that the steady state entropy production can be expressed
as the sum along a set of independent emergent cycles
of products of affinities (13) and emergent cycle currents11

Jγ: Σ̄ =


γ AγJγ.
Summarizing, the conservation laws provide us with

both the components—which are useful for expressing the
steady state distributions—and the constraints (Eq. (12))
on the emergent cycles of the network (Eq. (10)). Due to
these constraints, the first emergent cycle appears in the
system with three chemostats. For any additional chemostat
an additional independent cycle emerges. Through these
cycles the environment exerts chemical forces, which are
generated by the chemostats concentrations. The external
currents analyzed in Subsection III C result from these forces
and characterize the dissipation.

We emphasize that the relation between the number of
chemostats sY, of net broken conservation laws b, and of
emergent cycles a, is in perfect agreement with the general
result obtained for finite-dimensional phase space in Ref. 11
stating that

sY = b + a. (17)

These results are summarized in Table I.

IV. THE STATIONARY DISTRIBUTIONS

We now use the components introduced in Subsection
III A to derive the steady-state concentration distribution
for different number of chemostats. The conditions on the
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chemostats’ concentrations not leading to the steady state
solution are also identified.

From the steady-state equations corresponding to (5) and
from the equations for external currents (6), we can write
a general expression for the steady-state concentrations as a
function of the concentration of monomers, Z̄1, the fraction
of polymers larger than monomers, r̄ ≡ 1 − Z̄1/Z̄ , and the
chemostats fluxes, Īky, as follows:

Z̄k = Z̄1(r̄)k−1 +


ky∈ΩY

Īky

κ

1 − (r̄)k−ky

1 − r̄
Θ

�
k − ky − 1

�
, (18)

where Θ(·) represents the discrete step function (we refer
the reader to Appendix A for details). Here, the number
of chemostats is arbitrary, and since the external currents
at steady state satisfy the same constraints as in (12), only
sY − 2 of them are independent. In the next paragraphs, we
will discuss in detail the above expression for zero, one, two,
and three chemostats, and the variables Z̄1, r̄ , and Īky will be
expressed in terms of the components and of the chemostats’
concentrations.

A. Closed system

As previously discussed, the closed system exhibits the
following components: Z =

kmax
k=1 Zk and M =

kmax
k=1 k Zk. In

order to express the equilibrium distribution algebraically
as function of Z and M we consider the following limit
M ≫ Z . In this way kmax ∼ ∞ and imposing Z =

∞
k=1 Zk

and M =
∞

k=1 k Zk on expression (18) we can write Z̄1 and r̄
as functions of Z and M . Hence

Z̄k =
(Z)2
M

(
1 − Z

M

)k−1

. (19)

Fig. 3 shows the behavior of this distribution for different
values of Z and M . As expected, the higher the ratio between
the mass and the concentration M ≫ Z , the broader the
distribution.

Remark. The equilibrium distribution we obtained from
our dynamical description is equivalent to the result obtained

FIG. 3. Equilibrium concentration distribution for the closed system of
monomers-exchanging polymers at different values of the total concentration
Z and total mass M . The dark blue bar plot refers to the choice Z = 10 and
M = 15, while the light blue one to Z = 10 and M = 55.

using maximum entropy approaches and is consistent with
experimental observations.7 The equivalence is inferred by
comparing Eq. (19) with Eqs. (1), (3), and (4) in Ref. 7.

B. Open system: 1 chemostat

Introducing a chemostat breaks the concentration and
mass conservation laws, but a new one arises (8). As a result,
no affinity appears (sY = 1, b = 1, and a = 0) and the system
evolves towards an equilibrium state compatible with the
chemostat concentration Zky and the value of the component
q (9) (the steady-state external current vanishes, Īky = 0).
Also, since the system is now open, kmax is infinite.

Imposing the constraints on the expression for the steady
state (18), namely,




q = Z̄1 1 − ky (1 − r̄)
(1 − r̄)2

Zky = Z̄1(r̄)ky−1
, (20)

we can express the variables Z̄1 and r̄ numerically as functions
of q and Zky and obtain the equilibrium—exponential—
distribution as a function of q and Zky.

C. Open system: 2 chemostats

From two chemostats on, the infinite dimension of the
system starts to play a role. As discussed in Sec. III, two
chemostats are not enough to drive the network towards
a non-equilibrium steady state (sY = 2, b = 2, and a = 0):
Iky1 = 0 and Iky2 = 0, where ky1 and ky2 represent the masses
of the two chemostats (ky1 < ky2). Thus, imposing the known
values of the chemostat concentrations on expression (18)
leads to




Zky1 = Z̄1(r̄)ky1−1

Zky2 = Z̄1(r̄)ky2−1 , (21)

which only admits physical solutions if Zky1 > Zky2. In this
case, from (21) we obtain the equilibrium distribution

Z̄k = Zky1

(
Zky2

Zky1

) k−ky1
ky2−ky1

, (22)

which is broader the smaller Zky1 − Zky2 is or the larger
ky2 − ky1 is. When Zky1 ≤ Zky2 the equilibrium concentration
distribution becomes an increasing exponential which cannot
be reached. As a result the system will enter a regime of
continuous growth aimed at reaching that state (which we
analyze in Sec. V).

D. Open system: 3 chemostats

Three is the minimum number of chemostats able to drive
the system in a non-equilibrium steady state (Sec. III B).
Indeed, a class of emergent cycles appears (sY = 3, b = 2,
and a = 1) and the system exhibits a set of non-vanishing
external currents. If we impose the values for the chemostats’
concentrations on the general expression for the steady state
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(18), we obtain




Z̄ky1 = Z̄1(r̄)ky1−1,

Z̄ky2 = Z̄1(r̄)ky2−1 +
Īky1

κ

1 − (r̄)ky2−ky1

1 − r̄
,

Z̄ky3 = Z̄1(r̄)ky3−1 +
Īky1

κ

1 − (r̄)ky3−ky1

1 − r̄

+
Īky2

κ

1 − (r̄)ky3−ky2

1 − r̄
.

(23)

As discussed in Sec. III C, the external currents Īky are subject
to the same constraints as the emergent cycles and can be
written as linear combinations of them. Since we have one
class of emergent cycles, characterized by the νky values in
(14), we have that

Īkyi = Īνkyi, i = 1,2,3, (24)

where Ī ∈ R determines the exact value of the fluxes. As for
two chemostats, the set of equations in (23), in the variables Z̄1,
r̄ , and Ī, does not exhibit physical solutions if the concentration
of the largest chemostat is higher than the one of the smallest
one, i.e., Zky1 ≤ Zky3. On the other hand, whenever the above
condition is not fulfilled, the stationary solution is unique and
stable (Appendix B). Solving the system (23) numerically, we
obtain the values of Z̄1, r̄ , and Ī given Zky1, Zky2, and Zky3. In
Fig. 4, the distribution is shown for different values of these
concentrations.

The chemostat concentrations also determine the sign of
the related fluxes: if the concentration of the second chemostat
lies above the equilibrium distribution obtained by the first
and third one, we have a continuous flow of mass from
the intermediate chemostat towards the external ones (Ī > 0,
Fig. 4(a)). Vice versa, if the concentration of the second
chemostat lies below the equilibrium distribution obtained
by the first and the third one, we have a continuous flow
of mass from the smallest and largest chemostats towards
the intermediate one (Ī < 0, Fig. 4(b)). Importantly, whatever
physical value Zky1, Zky2, and Zky3 assume, the system cannot
exhibit a condition in which a net flux of matter from the
largest species to the smallest one occurs. This is clear by
looking at the νky-values in (14) used to express Īkyi, Eq. (24):
the sign of νky1 and νky3 is always the same, and opposite to
the one of νky2.

E. Open system: More chemostats

Going on adding chemostats, new independent classes
of emergent cycles appear. The procedure for determining
the steady-state distribution is equivalent to that discussed
is Subsections IV C and IV D. In these two cases we
proved that when the largest chemostat has a concentration
greater or equal to that of the smallest one, the system
does not reach a steady state. The same exact behavior has
been observed numerically for more chemostats, hence we
speculate that this property holds for an arbitrary number of
chemostats.

As a final remark, we point out that the steady-state
distributions do not depend on the value of the rate constant
κ. Indeed, solving Equations (20), (21), and (23) for Z̄1, r̄ ,

FIG. 4. Non-equilibrium steady-state distributions for the system of
monomer-exchanging polymers with three chemostatted species. In both of
the plots, the chemostats—highlighted in green and by the arrows—are ky1
= 2, ky2= 5, and ky3= 10. The orientation of the arrows denotes the sign of the
external fluxes of chemostats: arrows pointing up means chemostats leaving
the system, i.e., I ky > 0. The chosen chemostat’s concentrations are: plot (a)
Z ky1= 5, Z ky2= 7, and Z ky3= 2; plot (b) Z ky1= 5, Z ky2= 1, and Z ky3= 2.

and Īky/κ, we obtain them as functions of the components and
the chemostats’ concentrations. Since the latter do not depend
on κ, the same holds for Z̄1, r̄ , and Īky/κ. As a corollary
Īky is proportional to κ and the same holds true for entropy
production (16).

V. ASYMPTOTIC GROWTH REGIME

We mentioned in the previous section that the system does
not exhibit a steady state when the concentration of the largest
chemostat exceeds that of the smallest one, Zky1 ≤ Zky last—we
refer in the text to this configuration of chemostats leading to
continuous growth as “unbalanced.” The dynamical fixed point
moves outside the region of physical solutions—namely, to
r̄ ≥ 1, see Appendix B—and the system approaches the limit
r̄ → 1. This indicates that the concentration of the single
monomer species becomes negligible compared to the rest of
the species. Hence the system grows towards an unreachable
steady state with an exponentially increasing concentration
distribution.
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FIG. 5. Concentration distributions at different times are shown for system
in unbalanced conditions. Different colors from red to violet correspond
to exponentially increasing times. The set of plots is obtained by numer-
ical solution of differential equation (5). Absorbing boundary conditions
have been chosen, meaning that the concentration at the cutoff—here set to
kcutoff = 1000—is zero. We point out that this prescription is safe before the
cutoff is reached. In plot (a) we report a system with three chemostats. The
chemostat’s masses and the related concentrations chosen are: Z5= 1, Z19

= 7, and Z37= 2. The concentrations of the species between the chemostats
basically overlap at times t & 1 and become steady. Beyond this time the
growth only involves the species larger than the biggest chemostats. In plot
(b) we consider a system with monomers and dimers chemostatted: Z1= 3
and Z2= 4.

Fig. 5(a) shows the concentration distributions of an
unbalanced system at different times before the numerical
cutoff (more details are given in the related caption) is
reached. These different distributions show that while the
concentrations of the species between two chemostats stabilize
to steady values, the concentrations of the species larger than
the biggest chemostat do not. Hence, the system continuously
grows trying to populate the infinite size polymer. This
behavior has been observed taking into account different
number of chemostats and chemostats’ concentrations.

In order to characterize this growth algebraically, we
consider a system with monomer and dimer chemostats (ky1
= 1 and ky2 = 2) such that Zky1 ≤ Zky2. (The typical growth
obtained numerically in this scenario is shown in Fig. 5(b).)
Since the growth dynamics cannot be solved exactly, we
assume that the asymptotic concentration distribution can be
parametrized by (equilibrium) steady state expression (18)

with time dependent parameters, i.e.,

Zk(t) ≃ A(t)�a(t)�k−3
, for k ≥ 3, (25)

where A(t) and a(t) are unknown real functions of time.
To simplify the notation, let us denote the concentrations of
the chemostats by Y 1 ≡ Zky1 and Y 2 ≡ Zky2. The functions
A(t) and a(t) can be determined by means of the differential
equations for the total concentration Z and the total mass M ,

Ż = −I1 − I2 = −κZ(Z3 − Y 2) − κY 2Y 1,

Ṁ = −I1 − 2I2

= −κZ(2Z3 − 3Y 2 + Y 1) − κ2Y 2Y 1 + κY 1Y 1,

(26)

where Z , M and the concentration of trimers Z3 assume the
following form when ansatz (25) is taken into account,

FIG. 6. Stream plot of the differential equations (26) expressed in terms
of the ansatz functions a(t) (abscissa) and A(t) (ordinate). When balanced
chemostat concentrations are used, the fixed point takes values of a(t) in
]0,1[: plot (a). The chemostats chosen for this plot are Y 1= 4 and Y 2= 2.
Vice versa, when the chemostats are unbalanced (Y 1= 2 and Y 2= 4) the fixed
point moves outside from the physical region (a(t) > 1): plot (b).
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Z(t) ≃ A(t)
1 − a(t) + Y 1 + Y 2,

M(t) ≃ 3 − 2a(t)
�
1 − a(t)�2 A(t) + Y 1 + 2Y 2,

Z3(t) ≃ A(t).

(27)

When the equations are expressed in terms of A(t) and a(t), the
stream plots for different values of the chemostats’ concen-
trations show that the ansatz captures the non-equilibrium
phase transition occurring when the chemostats become
unbalanced, see Fig. 6. Indeed, for balanced chemostats,
the system evolves towards a fixed point with a lying in
]0,1[, Fig. 6(a). On the other hand, when the chemostats are
unbalanced the fixed point lies beyond a = 1 signaling an
asymptotic growth regime, Fig. 6(b).

The numerical solution for A(t) and a(t) obtained using
(26) and (27) accurately characterizes the asymptotic growth.
Indeed, as seen in Fig. 7, when comparing the evolution of
Z and M obtained from A(t) and a(t) with that obtained by
numerically solving the rate equations, the former solution
overlaps with the latter before the cutoff used in the numerics

FIG. 7. Total concentration (a) and total mass (b) as functions of time in
the asymptotic growth regime. The numerical solution obtained using ansatz
(25) is plotted in green (dashed). These plots are compared with numerical
solutions of the system of differential equations (5) with different cutoffs
(blue curves). The chosen chemostat concentrations are: Y 1= 3 and Y 2= 4
while the initial condition imposed is Z k(t = 0)= 2

5 ( 2
5 )k . Finally, the chosen

cutoff concentrations are: kc= 200 (dark blue curve), kc= 500 (blue curve)
and kc= 1000 (light blue curve).

FIG. 8. Entropy production rate as a function of time in the asymptotic
growth regime. The numerical solution obtained using ansatz (25) is plotted in
green (dashed). This plot is compared with numerical solutions of the system
of differential equations (5) with different cutoffs (blue curves). In all the
plot, the entropy production rate is given in units of R. The chosen chemostat
concentrations are: Y 1= 3 and Y 2= 4 while the initial condition imposed is
Z k(t = 0)= 2

5 ( 2
5 )k . The chosen cutoffs kc are: 200 (dark blue curve), 500

(blue curve) and 1000 (light blue curve). Also, the inset shows in greater
details the initial transient relaxation stage.

is reached. We find that the total concentration grows linearly
with time whereas the mass quadratically.

Taking into account ansatz (25), entropy production rate
(16) becomes

Σ ≃ RI1 ln
A(t)

Y 1(a(t))2 + RI2 ln
A(t)

Y 2a(t) , (28)

where I1 and I2 can be written in terms of Y 1, Y 2, A(t), and
a(t) using Eq. (26). The latter is plotted in Fig. 8, where it is
compared with the numerical solutions for different cutoffs.
The agreement with the numerical solution is not perfect
but captures the linear asymptotic growth of the entropy
production rate reasonably well. Also, we point out that
the unbalanced dynamics shown in Fig. 8 exhibits an initial
transient relaxation stage shown in the inset.

We conclude mentioning that the same ansatz could
be used for systems characterized by more chemostats
with unbalanced concentrations. Indeed, the growth always
involves the species larger than the biggest chemostat, whereas
the species between chemostats converge faster to proper
steady values. Hence, fixing the concentration of these latter
species, we could assume a growth like (25) for the species
larger then the biggest chemostat and perform the same
analysis.

VI. CONCLUSIONS

This paper provides a kinetic description of systems
made of glucans and processed by the class of enzymes
known as D-enzymes. The action of the enzyme induces a
monomer-exchange process12 between pairs of glucans which
are distinguished by their mass or degree of polymerization.
Free monomers are not allowed to attach to other polymers4

implying that the total concentration and the total mass
are conserved when the system is closed. The system’s
dynamics is ruled by rate equations for the polymer
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concentrations endowed with mass action kinetics. We mimic
physiological conditions by introducing chemostats which
effectively describe the action of the environment by fixing the
concentrations of certain glucans. In this scenario, chemostats
represent species processed by the environment. For example,
they may represent species which need to be processed and
injected by the environment in the system; analogously, they
may represent final products of the metabolic processes which
are taken out of the system. Importantly, chemostatting the
system amounts to open it and introduce driving forces on the
non-chemostatted species.

Our main results are summarized in Table I. We identified
three types of different long-time behaviors depending on the
chemostatting conditions: equilibrium state, non-equilibrium
steady state, and continuous growth of the system. The closed
system as well as the open system with a single chemostat
always relax to an equilibrium state. In presence of two
chemostats the system will either relax to equilibrium or turn
into a state of continuous growth depending on whether or not
the concentration of the largest chemostat is lower than the
concentration of the smallest one. We proved that this latter
condition for growth holds true for up to three chemostats
and conjectured that it is generally true based on numerical
evidence. For more than two chemostats, if the concentration
of the largest chemostat is lower than that of the smallest
one, the system will reach a nonequilibrium steady state
where the chemostats continuously exchange matter across
the system. Our results confirm that, even in the infinite-
dimensional chemical network considered here, the number of
chemostats equals to the number of broken conservation laws
plus the number of emergent cycles (see Table I). A proof
of this equality for finite dimensional chemical networks
is provided in Ref. 11. We also emphasized the role of
the emergent cycles in driving the chemostatted chemical
networks towards nonequilibrium steady states rather than
equilibrium states.11

The metabolism of polysaccharides is a complex process
involving many steps and several enzymes2 and its complete
dynamical characterization is beyond the scope of the present
paper. We focused on the dynamical characterization of the
disproportionating action of D-enzymes in the breakdown
and synthesis processes of glucans.5 Under physiological
conditions, it has been pointed out that one of the possible
role of D-enzymes in these processes is to produce glucans
of large sizes (which are then processed by other enzymes)
starting from medium sized ones.5 Importantly, a production
of glucose (monomers in our descriptions) is expected too.5

This disproportionating behavior can be reproduced in a
(nonequilibrium) steady state by the three chemostats system
depicted in Figure 4(a). The intermediate high concentration
chemostatted glucans represent the species to be processed,
while the low concentration chemostatted glucans represent
the species to be produced—in this case the small and large
glucans. In this scenario, a continuous flow of intermediate
glucans enters the system and consequently both the smaller
and the larger glucans are steadily produced and expelled
from the system (Sec. IV D). We stress that the production
of the small glucans follows from the total concentration
conservation law (Sec. III A), i.e., the fact that free monomers

cannot attach to other glucans. As seen in Sec. IV C, two
chemostats are not sufficient to reproduce a nonequilibrium
steady state.

Also, under closed in vitro conditions, the equilibrium
distribution (which has also been analyzed in Ref. 9 and can
be equivalently obtained by means of maximum entropy
methods7) agrees with experiments.7 This means that if
chemostatting conditions could be implemented in vitro, our
predictions could be verified experimentally. Such a procedure
would also enable to engineer different polymer concentration
distributions.

The approach we developed could be easily extended
to describe the behavior of more sophisticated forms of
D-enzymes7 embedding further conservation laws. It is
also relevant to study any type of exchange process or
aggregation–fragmentation dynamics12 in an open system
framework,19–22 emphasizing the importance of conservation
laws and providing more insights into the mechanisms driving
these processes out of equilibrium.
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APPENDIX A: STEADY-STATE DISTRIBUTIONS

The generic expression for steady-state distribution (18)
can be obtained as follows. The steady-state equations can be
expressed as

Z̄
�
Z̄2 − Z̄1	

+ Z̄1Z̄1 = 0,

Z̄
�
Z̄k+1 − 2Z̄k + Z̄k−1	

+ Z̄1 �
Z̄k − Z̄k−1	

=
Īk

κ
δk ky∈ΩY, for k ≥ 2.

(A1)

Defining the variable ∆Z̄k ≡ Z̄k − Z̄k−1, they become

Z̄∆Z̄2 + Z̄1Z̄1 = 0,

Z̄
�
∆Z̄k+1 − ∆Z̄k

	
+ Z̄1
∆Z̄k =

Īk

κ
δk ky∈ΩY, for k ≥ 2.

(A2)

Hence, by hierarchically substituting these expression one
into the other and using the variable r̄ ≡ 1 − Z̄1/Z̄ , we obtain

∆Z̄k = − (1 − r̄) Z̄1r̄k−2 +

+


ky∈ΩY

Īky

κ
r̄k−ky−1

Θ
�
k − ky − 1

�
, (A3)

where Θ(·) represents the discrete step function,

Θ(k) =



0 if k < 0,
1 if k ≥ 0.

(A4)
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Finally,

Z̄k =

k
i=1

∆Z̄ i = Z̄1(r̄)k−1 +

+


ky∈ΩY

Īky

κ

1 − (r̄)k−ky

1 − r̄
Θ

�
k − ky − 1

�
, (A5)

which corresponds to Equation (18) in the main text.

APPENDIX B: THREE CHEMOSTATS STEADY STATE

We discuss the uniqueness and stability conditions for the
steady state when three chemostats are present.

From the constraints on the steady state (23) and from
the condition for external currents (24), we can write a single
steady state condition involving just r̄ as variable,

�
νky3Z̄ky1 + νky1Z̄ky2

� (r̄)νky1+ν
ky3 −

�
νky1 + νky3

�
Z̄ky2(r̄)νky1

−
�
νky3Z̄ky1 + νky1Z̄ky3

� (r̄)νky3

+
�
νky3Z̄ky2 + νky1Z̄ky3

�
= 0. (B1)

Let us define the variables x ≡ (r̄)νky3 and y ≡ (r̄)νky1, so that
the above-expressed steady-state condition can be written as
the intersection of two curves: a rectangular hyperbola and a
power law function




yh = y0 −
z0

x − x0
,

yp = (x)νky1/ν
ky3
,

(B2)

where the coefficients are given by

x0 =

�
νky1 + νky3

�
Z̄ky2

νky3Z̄ky1 + νky1Z̄ky2
,

y0 =
νky3Z̄ky1 + νky1Z̄ky3

νky3Z̄ky1 + νky1Z̄ky2
,

z0 =
νky1νky3

�
Z̄ky2 − Z̄ky1

� �
Z̄ky2 − Z̄ky3

�
�
νky3Z̄ky1 + νky1Z̄ky2

�2 .

(B3)

[The subscripts h and p simply help us to distinguish the
two functions.] From a geometrical point of view, physical
solutions are represented by those intersection points lying
in (x, y) ∈ (0,1) × (0,1). In order to prove that this happens
whenever Z̄ky1 > Z̄ky3 we observe that all of the possible
configurations of chemostat concentrations are described by
the following four cases for the parameters x0 and y0.

• x0 < 1 and y0 < 1 (z0 < 0). This condition implies
the following configuration for the chemostats: Z̄ky1

> Z̄ky2 > Z̄ky3.

In this case we have always one and only one
solution. Indeed, the center of the hyperbola (x0, y0)
lies in (0,1) × (0,1), and the upper right branch of
the hyperbola always intersects the power law in
x = 1 (which is non-physical). The left lower one,
instead, always intersects the power law for values in
(0,1) × (0,1) since yh(x = 0) > 0 (Fig. 9(a)).

• x0 < 1 and y0 > 1 (z0 > 0). This condition corresponds
to Z̄ky1 > Z̄ky2 and Z̄ky3 > Z̄ky2.

FIG. 9. Plots of the hyperbola (dark
purple curve) and power law (light pur-
ple curve) in (B2) for different config-
urations of parameters. The center of
the hyperbola is highlighted by a dark
purple dot, while the physical region by
the dashed orange lines. (a) x0 < 1 and
y0 < 1, (b) x0 < 1 and y0 > 1, (c) x0 > 1
and y0 < 1 and (d) x0 > 1, and y0 > 1.
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In this case we have one solution if and only
if Z̄ky1 > Z̄ky3. The center of the hyperbola lies
in (0,1) × (1,∞) and the upper left branch of the
hyperbola never intersects the power law. The right
lower one, instead, always intersects the power law in
x = 1, y = 1 (Fig. 9(b)). We have a further intersection
in the physical region if and only if dyp

dx
���x=1

>
dyp
dx

���x=1
,

which holds iff Z̄ky1 > Z̄ky3—indeed, x∗ : yh(x∗) = 0 is
such that x∗ > 0, for any choice of the chemostats.

• x0 > 1 and y0 < 1 (z0 > 0). This condition corresponds
to: Z̄ky1 < Z̄ky2 and Z̄ky3 < Z̄ky2.

Once again, we have one solution if and only if
Z̄ky1 > Z̄ky3. The center of the hyperbola lies in
(1,∞) × (0,1) and the right lower branch of the
hyperbola never intersects the power law. The upper
left one, instead, always intersects the power law in
x = 1, y = 1 (Fig. 9(c)). We have a further intersection
in the physical region if and only if dyp

dx
���x=1

>
dyp
dx

���x=1
,

which holds iff Z̄ky1 > Z̄ky3—indeed, yh(0) > 0 for any
choice of the chemostats.

• x0 > 1 and y0 > 1 (z0 < 0). This condition implies the
following configuration for the chemostats: Z̄ky1 < Z̄ky2

< Z̄ky3.

In this case we have no solutions. Indeed, the center
of the hyperbola lies in (x, y) ∈ (1,∞) × (1,∞) and
neither the upper right nor the lower left branch of
the hyperbola intersects the power law in the physical
region. The left lower one, indeed, always intersects the
power law in (1,1) which is non-physical (Fig. 9(c)).

Summarizing, we have a unique steady state whenever
the concentration of the largest chemostat is higher than the
concentration of the smallest one: Z̄ky1 > Z̄ky3.

Stability. In order to prove the stability of the fixed point
we resort to the following Lyapunov function:

L =

k

Zk ln
Zk

Zk
s
− (Z − Zs) . (B4)

It is easy to prove that this function is always positive and
vanishes only for Zk = Zk

s , where Zk
s represents the steady-

state solution. If the steady-state solution exists, namely,
if exists Zk

s : Żk
s = 0, the time derivative of the Lyapunov

function (B4) can be written as

dL
dt
=


kx

Żkx ln
Zkx

Zkx
s
. (B5)

Close to the steady state the above derivative is negative.
Spanning the phase space with small perturbations on every
concentration, we always obtain dL

dt ≤ 0, where the equal sign
is reached only at the steady state. Disregarding the infinite
dimension of the phase space, we consider the independent
set of perturbations labeled with the index k ′x and quantified
by the small real value ϵ

Zkx = Zkx
s + ϵδ

k′xkx, |ϵ | ≪ min
kx

Zkx
s . (B6)

Embedding these perturbation in (B5) and using rate equations
(5) we obtain

dL
dt
≃ − κ

Z1
s

�
Zs − Z1

s − Z2
s

�
ϵ2, for k ′x = 1,

dL
dt
≃ − κ

Zk′x
s

(
2Zs + 2Zk′x

s

− Zk′x+1
s − Zk′x−1

s − Z1
s

)
ϵ2, for k ′x , 1,

(B7)

which are always negative, no matter the sign of the
perturbation.
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