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I. INTERACTION POTENTIAL BETWEEN

THE BEADS

We use the 2D relative displacement vector in polar
coordinates r = (r, θ) as shown in (fig1). The interaction
between the beads is modeled using a potential, which is
the sum of three contributions: the dipolar interaction of
the magnetic beads with each other Udip, the interaction
Umag of the beads with the applied magnetic field B =
Bẑ, and a repulsive interaction of electrostatic origin Uel:

U(r, θ, B) = Udip(B, r, θ) + Umag(B) + Uel(r). (1)

This potential has a short range repulsive part due to
the electrostatics and a long-range attractive part due
to the dipolar interaction as described in [? ]. It is ex-
pressed in units of kBT . We provide below the values
of the experimental parameters entering in this potential
corresponding to the τ = 2s experiment described in the
main text.
The electrostatic part of the potential is obtained from

Debye-Hückel theory adapted to the case of two spheres
using the Derjaguin approximation. In the present case,
where the particle diameter d is much larger than the
Debye length λDB , the expression is

Uel(r) = U0 ln
(

1 + e−(r−d)/λDB

)

, (2)

where U0 is the strength of the interaction, which de-
pends on the particle electrostatic potential (zeta poten-
tial), the dielectric constant of the bead and the particle
diameter. In the present experiment, we obtain from the
fit of the probability distribution of the relative displace-
ment between the beads: U0 ≃ 1800 in units of kBT ,
d = 2.805µm, and λDB = 44.2nm.
The magnetic dipolar part of the potential has the form

Udip(B, r, θ) =

(

B

B0

)2 (
d

r

)3
(

1− 3 cos2 θ
)

, (3)

where B is the applied magnetic field and B0 =
0.09008mT. In this model, Udip describes the interaction
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between the two magnetic dipoles m1 and m2 carried by
the beads. As mentioned in the main text, since the value
of the applied field is rather large (the corresponding en-
ergy is large with respect to kBT ), we can consider that
the orientation of these dipoles is frozen along the ap-
plied magnetic field. Furthermore, we assume that these
dipoles are independent of the bead distance and that the
two beads are identical (in particular that they have the
same radius) which implies that m1 = m2 = mẑ. In the
end, the constant (B/B0)

2 represents in fact m2/4πµ0,
given the linear relation between the magnetic dipoles
and the applied magnetic field.
The direct interaction of the magnetic dipoles m1 and

m2 carried by both beads with the magnetic field is

Umag(B) = −m1 ·B−m1 ·B, (4)

Given our assumption that m1 = m2 independent of r,
this term represents a contribution which is quadratic in
the field but constant in terms of the r dependence.

II. HYDRODYNAMIC MODEL OF THE

FRICTION BETWEEN THE BEADS

Dissipation in this system is mainly of hydrodynamic
origin. In view of the proximity of the two beads with
respect to each other and to the wall, one can rely on the
lubrication approximation to describe the hydrodynamic
friction coefficients. These coefficients are the sum of the
friction due to the sphere-sphere interaction Γs

i and the
friction between the sphere and the bottom wall Γw

i , be-
cause the corresponding forces are parallel to each other.
More explicitly Γi(r) = Γs

i +Γw
i for i ≡ {r, θ}. We thank

H. Stone for insightful discussions concerning the proper
modeling of these friction coefficients.
Let us first discuss the friction between the spheres

and the wall, and to obtain that we first need to know
the interaction of a single sphere with a wall. This hydro-
dynamic interaction can be calculated within the lubrica-
tion approximation. We are mainly interested in the case
of the translation of the sphere in a tangent plane parallel
to the wall (assuming no rotation of the bead). In this
case, the friction is increased by a factor 16π ln(a/b)/15,
where a is the bead radius and b the gap between the
sphere and the wall, with respect to the Stokes-Einstein
friction of the same sphere in a bulk fluid [? ]. It fol-
lows from this that the friction coefficient between the
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two beads and the wall along the er and eθ directions
take the following form

Γw
r (r) =

8

15
γ ln

a

b
, (5)

Γw
θ (r) =

8

15
γr2 ln

a

b
,

where γ represents the bare friction coefficient of a single
bead far from the wall.
In order to model the hydrodynamic interaction be-

tween the beads, we have built our model on the work
of Jeffrey and Onishi [? ]. The first step is to reduce
the motion of the two beads to the motion of one fictive
particle in the frame of the center of mass. We denote
by ṙ

σ the velocity vector of the magnetic bead σ and
ṙσi its coordinate i. The force applied on the bead is
F

σ = −∇σV (rσ − r
ω) = ∇ωV (rσ − r

ω) = −F
ω and its

coordinates are F σ
i . The symbol ∇ω is for the gradient

calculated with the coordinates of the bead ω. In the
following we neglect the rotation of the beads and the
hydrodynamics torque. The force and the velocity are
given by

ṙσi = Mσω
ij Fω

j , (6)

thanks to the linearity of the Stokes equation at low
Reynolds number [? ]. By convention, all repeated in-
dices are summed over. The spheres being symmetric,
the mobility tensor M is symmetric in the exchange of
the two beads, i.e. Mσω

ij = Mωσ
ij . The relative velocity

of the two beads is given by the vector ṙ = ṙ
1 − ṙ

2 and
the coordinates of that vector verify

ṙi = M11
ij F

1
j +M12

ij F
2
j −M21

ij F
1
j −M22

ij F
2
j

= 2
(

M11
ij −M12

ij

)

F 1
j . (7)

Using the unit vector er = r/r of coordinates e1 = 1 and
e2 = 0 in the polar basis (er, eθ), the mobility tensor
takes the following form

Mσω
ij = xσωeiej + yσω(δij − eiej) (8)

where the coefficients xσω and yσω are dependant of the
distance r between the two beads. The coordinates of
the relative velocity become then

ṙi = 2(x11−x12)eiejF
1
j +2(y11−y12)(δij−eiej)F

1
j , (9)

or more explicitly because ṙ1 = ṙ and ṙ2 = rθ̇ in polar
coordinates (we have for the relative velocity in the polar

basis ṙ = ṙer + rθ̇eθ).

ṙ = 2(x11 − x12)F 1
1 = −2(x11 − x12)∂rV (r, θ), (10)

rθ̇ = 2(y11 − y12)F 1
2 = −

2(y11 − y12)

r
∂θV (r, θ). (11)

We have used the coefficients xσω and yσω introduced by
D.J. Jeffrey and Y. Onishi [? ] in the nearly touching

sphere limit [? ]. In this limit, we have

x11 − x12 =
4

γ

( r

d
− 1

)

, (12)

y11 − y12 =
0.402(ln ξ−1)2 + 2.96 ln ξ−1 + 5.09

γ ((ln ξ−1)2 + 6.04 ln ξ−1 + 6.33)
, (13)

where ξ = 2(r − d)/d = (r − 2a)/a and γ = 6πηd/2 =
6πηa the friction coefficient of one particle alone in the
fluid of viscosity η. In order to obtain a compact nota-
tion, we introduce the notation k(r) = γ(y11− y12), with
the y11− y12 given in the equation above. It follows that
the friction coefficients for the sphere-sphere interaction
take the form

Γs
r(r) =

γa

4r − 8a
, (14)

Γs
θ(r) =

γr2

2k(r)
.

When these friction coefficients are combined with the
friction coefficients for the sphere-wall interaction given
in Eq. 5, the full friction tensor and the Langevin equa-
tions given in the main text are obtained.

III. DISTRIBUTIONS OF HEAT AND

INTERNAL ENERGY

We show in figures 1 and 2 the probability distributions
of heat and internal energy constructed from the exper-
imental datas used also for figure 3 of the main text.
These histograms represent experimental data points
which are compared with simulations of the Langevin
equations.
With the definitions of work and heat of Eq. 4 of the

main text, one can write the first law in the form of
∆U = W + Q, where ∆U denotes the difference of in-
ternal energy between the initial and final point of the
cycle namely, U(r(τ + τeq), B(τ + τeq)) − U(r(0), B(0)).
Now, by definition of a cyclic protocol, the initial and
final value of the control parameter are the same. Since
r(0) and r(τ + τeq) are distributed according to the same
canonical distribution (if the equilibration is done prop-
erly), then it follows that 〈∆U〉 = 〈W 〉 + 〈Q〉 = 0. This
is indeed well verified by the experimental average work
and heat, since we have obtained 〈W 〉 = 3.3 ± 0.2kBT
and 〈Q〉 = −3.4± 0.2kBT . Naturally, higher moments of
the distribution of the random variable ∆U may not van-
ish. In fact, as mentioned in the main text, a strategy to
test that the system is well equilibrated with a sufficient
duration of the pauses consists precisely in studying this
distribution of internal energy and in comparing it with
the heat fluctuations measured at equilibrium. Indeed,
for a constant value of the magnetic field, we measure the
equilibrium distribution of heat, denoted Peq(Q). Since
there is no work in this case, this distribution Peq(Q)
should match P (∆U) in the non-equilibrium experiment
provided the initial and end point in the cycle in the
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FIG. 1. Probability distribution of the heat P (Q), con-
structed from an experiment using 460 cycles (histogram) and
from a simulation of Eq. 2 of the main text (solid line), in the
same conditions as the probability distribution of work shown
in Fig 3 of the main text. The average heat in this experiment
is −3.4± 0.2kBT .

non-equilibrium experiment are well equilibrated and if
the control parameter at these points has the same value
as the one used in the equilibrium experiment. Therefore,
as mentioned in the text, a comparison between these two
distributions offers a simple way to test equilibration in
this system. As shown in fig 3, this test is well satisfied
in the conditions of our experiment.

We have also studied the approach to the quasi-static
limit using simulations. Using simulations, we have eval-
uated 〈W 〉 for different durations τ of the protocol. As
expected 〈W 〉 → 0 in the quasi-static limit τ → ∞ and
in the limit τ → 0 by definition. As a result, we find
that 〈W 〉 has a maximum at some τ which depends on
equilibration time τeq and on the relaxation time τrel
characteristic of the fluctuations around the minimum of
the potential. Since the potential is very anharmonic,
τeq ≫ τrel. We have also observed that the maximum of
〈W 〉 occurs at a time which is too short to be accessible
with our experiment.

A few words on how the experimental histograms have
been constructed: The histograms have been obtained by
counting the number of events ni with a work, heat or
energy change in the range of the ith bar of the his-
togram, i.e. pi = ni/N with N the total number of
events. The error bars are estimated using the vari-
ance of the binomial law for the random variable ni

leading to the following approximation for pi, namely
ni/N ± (pi(1 − pi)/N)1/2.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-6 -4 -2 0 2 4 6 8

∆U (in units of kBT )

Simulations P (∆U)
Experiment P (∆U)

FIG. 2. Probability distribution of the internal energy
P (∆U), constructed from an experiment using 460 cycles (his-
togram) and from a simulation of Eq. 2 of the main text (solid
line), in the same conditions as in Fig 1 of the main text. The
average internal energy in this experiment is close to zero.
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FIG. 3. Probability distribution of the internal energy change
P (∆U), constructed from non equilibrium experiments using
460 cycles (histogram) and probability distribution of heat
exchange from equilibrium experiments (continuous line with
data points).

IV. INFORMATION BASED ESTIMATION OF

THE AVERAGE DISSIPATION

The first method discussed in the main text, to esti-
mate the dissipation from the information content of the
trajectories, relies on an estimate of the KL divergence of
two probability distributions pF (t) and pR(τ − t), eval-
uated at two points which are time-reversal symmetric
in the protocol of applied magnetic field. We recall the
inequality which is used:

β〈Wdiss(τ)〉 ≥ D(pF (t)||pR(τ − t)). (15)
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In order to test this idea, we have evaluated the left and
the right hand side of this equation at different time t,
which corresponds to the time of a specific point within
the protocol of duration τ as defined in figure 1. Due
to the symmetry of the protocol, the average dissipated
work 〈Wdiss(τ)〉 is equal to the average work 〈W (τ)〉mea-
sured in the first part of the paper. For completeness, we
include here two snapshots of the probabilities used to de-
termine the KL estimate, at two specific times, namely
at t = 1.5s and t = 2s. On one hand, at the time t = 1.5s,
the KL divergence is close to its maximum as shown in
Fig. 4 of the main text, and we can see in figure 4 that
indeed the two distributions differ significantly from each
other at this time. On the other hand, at the time t = 2s,
the two distributions are closer to each other as seen in
figure 5 and as a result the KL estimate is lower. It is
interesting to note that in Fig. 4, the highest value of the
KL divergence occurs in the second half of the protocol,
only after the protocol has changed sign. This shows that
the irreversibility of the evolution of the system is eas-
ier to determine from the information of the trajectories
only after the system has reacted to a variation of the
protocol in time.

The second method to estimate dissipation from the
information of the trajectories discussed in the main text
relies instead on an estimate of the KL divergence be-
tween an equilibrium peq(t) and a non-equilibrium prob-
ability distribution pneq(t). In such a formulation, both
distributions need to be evaluated at the current value
of the control parameter at time t which is the final time
for the evaluation of the dissipated work Wdiss(t):

β〈Wdiss(t)〉 ≥ D(pneq(t)||peq(t)). (16)

In order to test this relation, we have again varied the
time t as before. In such a case, since the protocol is no
longer symmetric, i.e. it does not take the same value
at the initial and final time used in the evaluation of
〈Wdiss(t)〉, one needs to take into account the contribu-
tion from the free energy. Thus, we evaluate 〈Wdiss(t)〉
from 〈W (t)〉−∆F (t), where ∆F (t) = F (B(t))−F (B(0))
is the equilibrium free energy difference evaluated with
a protocol taken at time t and at the initial time 0. In
order to evaluate this free energy, we have calculated it
numerically from the partition function as the following
2D integral F (B) = −kBT logZ(B), where

Z(B) =

∫

dr exp (−βU(r, θ, B)) , (17)

where the integrand contains the 2D interaction potential
introduced in the first section of these notes. At low field,
the potential is not sufficiently confining and the integral
over the distance between the beads r needs to be regu-
larized. In order to do this, we have introduced a cutoff
which corresponds to the maximum distance observed in

the experiment between the beads, namely a few microns.
To summarize, the evaluation of 〈Wdiss(t)〉 requires the
experimentally determined values of the work on the 460
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FIG. 4. Histogram of the probability distribution pF (t) (blue
bars) and pR(τ − t) (red bars) evaluated at the time t = 1.5.
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FIG. 5. Histogram of the probability distribution pF (t) (blue
bars) and pR(τ − t) (red bars) evaluated at the time t = 2s.

cycles used before, together with the above free energy
difference evaluated with the corresponding value of the
protocol of magnetic field at the time t. As expected from
Eq. 16, the curve corresponding to 〈Wdiss(t)〉 lies above
the one corresponding to the KL bound at all times ex-
cept in a small region at very early time. In this region,
both 〈Wdiss(t)〉 and its KL estimate are small and their
precise evaluation is more difficult than at later times.
We attribute the discrepancy seen at very early time to
the fact that the equilibration at the initial time may not
be perfect and the experimental probability distribution
may differ slightly from peq(τ) which is evaluated using
the theoretical model for the interaction potential.


