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Abstract.  In this paper, we derive a number of inequalities which express 
power-eciency trade-os that hold generally for thermodynamic machines 
operating in non-equilibrium stationary states. One of these inequalities 
concerns the output power, which is bounded by a quadratic function of the 
thermodynamic eciency multiplied by a factor. Dierent factors can be 
obtained according to the level of knowledge one has about the underlying 
dynamics of the machine, they can depend for instance on the covariance of the 
input flux, the dynamical activity, or the non-equilibrium conductance.
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Introduction

In recent years, considerable eorts have been devoted to engineer new thermoelectric 
materials with the best possible eciency [1] and to build small artificial stochastic 
engines mimicking molecular motors [2–4]. Clearly, in order to build the best possible 
machines, it is essential to develop a general understanding of the relationship between 
power, precision and dissipation [5]. What are the fundamental limits and design trade-
os involved in optimizing these three quantities? 

This question is related to a major recent development in stochastic thermodynam-
ics called the thermodynamic uncertainty relation, which is important because it goes 
beyond the usual formulation of the second law of thermodynamics [6]. This result 
establishes that the precision on a thermodynamic current in non-equilibrium station-
ary states comes with a minimal energetic cost [7, 8], where precision is quantified 
by the variance of the current and the energetic cost is measured by the dissipation. 
Applications of this thermodynamic uncertainty relation include among others, an 
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inference method to obtain the topology or the dissipation present in chemical networks 
[9–11], a characterization of Brownian clocks [12], bounds on the eciency of molecular 
motors [13], design principles on non-equilibrium self-assembly [14] and much more.

For stochastic systems in contact with heat baths, a related result derived by 
Shiraishi et al [15] states that the square of the heat current between the system and 
heat bath is bounded by a system-dependent positive constant times the rate of entropy 
production. The Shiraishi et al result and the thermodynamic uncertainty relation both 
lead to similar power-eciency trade-os as far as the dependence on eciency is con-
cerned and the main dierence between the two results lies in a system-dependent con-
stant in factor of the function of the eciency. Regardless of the precise value of this 
system-dependent positive constant, both results imply that the maximal eciency of 
machines can only be realized at vanishing power output. The similarity between these 
two formulations of the power-eciency trade-os suggests that a general framework 
could exist, which presumably would include both formulations in a unifying way.

The search for such an unifying framework is motivating the present paper. In 
fact, a number of recent works are going in this direction: on one hand, the result of 
Shiraishi et al has been generalized to arbitrary currents besides the heat current, for 
non-thermal heat baths, and for dynamics with broken time-reversal symmetry but 
keeping the assumption of Langevin dynamics [6]. These authors obtained a general 
inequality based on the Cauchy–Schwartz inequality, according to which, the rate of 
entropy production is bounded from below by the square of any irreversible current. 
On the other hand, some of the limitations of the thermodynamic uncertainty relation 
have now been overcome, such as the assumption of steady states. Indeed, in [16] time-
periodic machines have been studied in this context. These new results also follow from 
bounds on large deviation functions of a single current as in the original uncertainty 
relation, except that they no longer involve the entropy production, which is replaced 
by a dierent quantity. This quantity can be interpreted as the entropy production of 
the stationary dynamics that has the same mean current. Finally, another limitation of 
the uncertainty relation, the requirement of not breaking time-reversal dynamics, has 
been addressed in [17].

In this paper, we follow a somewhat dierent route as compared to these works, 
while still aiming at unifying power-eciency trade-os. Our approach is based on a 
concept we introduced in an earlier work, namely that of non-equilibrium conductance 
matrix [18]. This conductance matrix, relates physical currents to thermodynamic 
forces, just like the Onsager matrix, but generalizes it by being not limited to the near 
equilibrium regime. This new framework holds for systems operating in general non-
equilibrium stationary states, i.e. arbitrarily far from equilibrium. By construction, this 
conductance matrix is a real, symmetric and semi-definite positive matrix, just like the 
Onsager matrix. One important dierence with the Onsager matrix however, is that 
the coecients of this matrix are not constants, but are functions of thermodynamic 
forces. Only near equilibrium, this dependence can be neglected in which case the 
non-equilibrium conductance matrix becomes identical with the Onsager matrix. This 
similarity with the Onsager matrix, allowed us to prove that the maximum thermody-
namic eciency achievable by a thermodynamic machine only depends of the so-called 
degree of coupling of the thermodynamic machine [18], thus generalizing an old result 
which was known for machines operating near equilibrium [19]. We also noted that 
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the macroscopic current-force relation does not lead to a unique conductance matrix, 
while a unique matrix can be built if the microscopic dynamics is known. To obtain an 
explicit matrix in this way, we considered a dynamics of Markov jump processes, and 
we obtained the non-equilibrium conductance matrix by extending a previously intro-
duced large deviation formalism of stochastic currents [20].

In this paper, we derive a number of bounds using the method introduced in [18] 
and we make contact with the results of Dechant and Sasa [6] and of Shiraishi et al 
[15]. We find a hierarchy of inequalities in terms of either the conductance matrix, 
an activity matrix (which is a variant of the conductance matrix built from the  
transition frequencies instead of the local resistances), and the covariance matrix of 
the physical currents. This hierarchy of inequalities represents a generalization of the 
thermodynamic uncertainty relation that naturally leads to power-eciency trade-os. 
Finally, we illustrate these trade-os using two examples of thermodynamic machines.

1. Power-eciency trade-os

1.1. Bounds on the output power

Let us focus on the simple case of a machine, in which a driving process, which we call 
the first process, drives another process, the second process. If we call σ1 (resp. σ2) the 
partial entropy production rate of the first (resp. second) process, we have σ1 � 0 and 
σ2 � 0. Let us then define the total entropy production as σ = σ1 + σ2, and the ther-
modynamic eciency as η = −σ2/σ1. Using the definition of η and the second law of 
thermodynamics σ � 0, we have 1 � η � 0.

Let us also denote FX the anity and JX the corresponding physical current of the 
process X = 1, 2 of the machine, then the partial entropy production rate σX is simply 
σX = FXJX . As explained above, we relate the physical currents to the anities by a 
generalization of the Onsager matrix, which we call the non-equilibrium conductance 
matrix G, in such a way that JX =

∑
Y GX,Y FY  [18]. We then introduce a new parame-

trization of this matrix in terms of the degree of coupling ξ = G12/
√
G11G22 × sign (F1F2) 

and the relative intrinsic dissipation ϕ =
√
(G22F 2

2 )/(G22F 2
1 ). By expressing −σ2 in 

terms of these parameters and optimizing with respect to them, we obtain the power-
eciency inequality:

−σ2 � G11F
2
1 η(1− η), (1)

and alternatively using the component G22 of the non-equilibrium conductance matrix

−σ2 � G22F
2
2

1− η

η
. (2)

An interesting and important consequence of these inequalities is that the output 
power (proportional to −σ2) must vanish when the eciency approaches its maximum 
value, i.e. when η → 1, which corresponds for heat engines to the Carnot eciency, 
unless both coecients G11F

2
1
 or G22F

2
2
 diverge. The specific case where these coeffi-

cients diverge has been considered in [21 and 22].

https://doi.org/10.1088/1742-5468/ab14d7
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An inequality of the type of equation (1) has been first derived in [15] for heat engines. 
In that work, the coecient G11F

2
1
 was replaced by a model dependent coecient Θ̄, for 

which an expression was provided for a system interacting with Langevin heat baths, 
in terms of the time average of the total kinetic energy of the engine, the temperature 
(of the baths), mass (of the engine) and damping constant (of the engine). A similar 
inequality has been derived in [13] by Pietzonka et al in the context of molecular 
motors based on the thermodynamic uncertainty relations [7, 8]. In their case, G11F

2
1
 

is replaced by the variance of the input current.

1.2. Bounds on the input power

A similar calculation to that used to derive equations (1) and (2) also gives bounds on 
the input power σ1 and on the total entropy production σ. Two types of bounds can be 
obtained by making the process one or two special. If one chooses to specialize to the 
process one, the input power σ1 takes the following expression:

σ1 = F 2
1G11 (1 + ξϕ) . (3)

By optimizing this expression with respect to ϕ at constant ξ, one obtains a lower 
bound which only depends on the degree of coupling:

σ1 � F 2
1G11

(
1− ξ2

)
. (4)

As also done in the derivation of equations (1) and (2), in this optimization, one can 
treat G11 as constant, because there are only two independent parameters in the con-
ductance matrix, so they can be chosen to be ϕ and ξ.

In order to obtain a dierent bound now in terms of the eciency η rather than the 
degree of coupling, one uses the expression of ϕ as a function of η and ξ [18]:

ϕ± = −ξ (η + 1)

2
± 1

2

√
(η + 1)2ξ2 − 4η, (5)

which is then reported into equation (3). One obtains two functions of ξ, σ±
1 (ξ), which 

are such that σ+
1 (ξ) � σ−

1 (ξ). Since σ+
1 (ξ) is a monotonously decreasing function of ξ, 

this function reaches its maximum at ξ = −1. Reporting this value into the expression 
of σ+

1  leads to the upper bound

σ1 � G11F
2
1 (1− η). (6)

If we instead choose to make the second process special, one starts with

σ1 = F 2
2G22

1 + ξϕ

ϕ2
. (7)

Now, after reporting the expression of ϕ± into this σ1, one obtains two solutions which 
are such that σ+

1 (ξ) � σ−
1 (ξ). Then, the upper bound is obtained by reporting ξ = −1 

into σ−
1 , which leads to

σ1 � G22F
2
2

1− η

η2
. (8)

https://doi.org/10.1088/1742-5468/ab14d7
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1.3. Bounds on the total entropy production

Similarly, the total entropy production can be expressed in terms of ϕ and ξ by choos-
ing either the first or the second process as special. An optimization with respect to ϕ 
at constant ξ leads in the former case to the bound:

σ � F 2
1G11

(
1− ξ2

)
, (9)

and to

σ � F 2
2G22

(
1− ξ2

)
, (10)

in the later case. It is interesting to note that these lower bounds represent an improve-
ment with respect to the second law, except at tight coupling when ξ = −1 where the 
inequalities (9) and (10) become the second law σ � 0. Similarly, for the partial entropy 
production, (4) represents an improvement with respect to the second law for the 
partial entropy production σ1 � 0 except at tight coupling. Interestingly, in addition 
to these lower bounds, this framework also leads to upper bounds on the input power 
such as (6) and (8). In the limit where η → 1, these upper bounds impose that the input 
power should vanish σ1 → 0 since σ1 � 0. It is clear that this should be the case since 
we have already noted that in general σ2 → 0 as η → 1, therefore given the definition 
of η, σ1 → 0 as η → 1.

The improved bound on the total entropy production of (9) is tested in figure 1 for a 
stochastic model of a molecular motor which will be presented in details in section 3.2. 
The test consists in varying systematically kinetic parameters of the model and eval-
uating in each case the entropy production and the degree of coupling. The same 

0

0.5

1

1.5

2

−1 −0.75 −0.5 −0.25 0

σ
/G

11
F

2 1

ξ

Figure 1. Total entropy production as function of the degree of coupling for the 
molecular motor model introduced in section 3.2. The violet solid line is the bound 
of equation (9). The kinetic parameters of the model are randomly chosen by 
multiplying the values used in figure 2(a) by ex with x drawn uniformly within 
[−2, 2], whereas the values of the anity are uniformly drawn within [−3, 1] for f  
and [3, 7] for ∆µ.
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figure for the bound (10) presents similar features but is not presented. A related test 
also performed in the same way with this model checked that the maximum eciency 
only depends on the degree of coupling [18].

2. Hierarchy of matrix inequalities

2.1. Conductance, activity and covariance matrices for Markov jump processes

We use a Markov jump process to model a mesoscopic machine with a finite number of 
states. The probability per unit time to jump from state y  to state x is given by the rate 
matrix k of components k(x,y) � 0. We call the couple of states (x, y) an oriented edge 
when k(x,y) > 0. We assume that if the jump from y  to x is possible then the reverse 
jump also exists, i.e. k(x,y) > 0 implies that k(y,x) > 0. The stationary probability of x, 

denoted πx, verifies by definition 
∑

y k(x,y)πy = 0. The mean probability current along 
edge (x, y) in the stationary state is

J(x,y) ≡ k(x,y)πy − k(y,x)πx, (11)
and the corresponding edge anity writes

F(x,y) ≡ ln
k(x,y)πy

k(y,x)πx

. (12)

We also introduce the physical matrix φ̄ that connects the edge current to the physical 
current by

JX =
∑
(x,y)

φ̄X,(x,y)J(x,y), X = 1, 2.
 (13)

From the mean probability currents and edge anities, we define an edge conduc-

tance Ḡ(x,y) ≡ J(x,y)/F(x,y) which is a diagonal matrix in the space of edges. In [18], we 
derived a unique expression of the non-equilibrium conductance matrix by combining 
edge resistances (inverse of edge conductances) in series, and cycle conductance in par-
allel, leading to

G ≡ φ̄ · C ·
(
CT · Ḡ−1 · C

)−1

· CT · φ̄T
, (14)

where C is the cycle matrix whose columns represent fundamental cycles on the graph 
of the machine and lines correspond to edges on the graph [20, 23]. Each component 
of the matrix C is 1 or  −1 if the edge belongs to the cycle (with sign  +  if the cycle and 
edge have the same orientation), and 0 otherwise.

In the study of non-equilibrium processes, the edge activity matrix Ā of diagonal 
components

Ā(x,y) ≡ k(x,y)πy + k(y,x)πx, (15)

is of fundamental importance [24–27]. In this equation, Ā(x,y) represents the mean num-
ber of jumps (irrespective of the direction of the jumps) per unit time between states x 

https://doi.org/10.1088/1742-5468/ab14d7
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and y  in the stationary state. The edge activity is as important as the edge resistance 
for transport properties because if the machine almost never performs a transition 
along an edge (which means it has a low activity), this edge resistance should be high. 
This argument explains why the dynamical activity should matter not only for the 
thermodynamic uncertainty relations [28], but more generally for key properties of the 
machine such its output power or its eciency. In exact parallel with the conductance 
matrix, we introduce the matrix of dynamical activity A as

A ≡ φ̄ · C ·
(
CT · Ā−1 · C

)−1

· CT · φ̄T
, (16)

where the edge activity appears instead of the edge conductance with respect to 
equation (14).

Finally, we define the covariance matrix C of physical currents

CXY ≡ lim
t→∞

t [〈jXjY 〉 − 〈jX〉 〈jY 〉] , (17)

where jX is the stochastic current for the driving process (X = 1) or the output current 
(X = 2). We denote by 〈...〉 the mean value in the stationary state, i.e. 〈 jX〉 = JX. The 
covariance matrix characterizes the small fluctuations of currents around their average.

Close to equilibrium case, the fluctuations-dissipation theorem connects the 
fluctuations characterized by the matrix C and the Onsager response matrix that is 
linked to dissipation. Far from equilibrium, the thermodynamic uncertainty relation 
replaces the fluctuations-dissipation theorem. In our framework, this shows up as a 
hierarchy of inequalities for the matrices G, A and C, emphasizing the key role played 
by the dynamical activity in non-equilibrium systems.

2.2. From matrix inequalities to power-eciency trade-os

In order to compare the various matrices introduced above, it is useful to introduce 
among them the Loewner partial order [29]. Given two symmetric n× n matrices V  
and W , we write V � W  when V −W  is a positive semi-definite matrix, which also 
means that

V � W ⇔
(
∀x ∈ Rn, xT · V · x � xT ·W · x

)
. (18)

With this definition, we derive in appendix A the following matrix inequalities using a 
large deviation framework:

G �
A

2
�

C

2
. (19)

We view equation (19) as a fluctuation-activity-dissipation inequality. At equilibrium, 
the non-equilibrium conductance matrix becomes the Onsager matrix L, and the two 
inequalities above saturate because L = A/2 = C/2.

Using equations (18) and (19) and chosing x = (1, 0)T, we find

G11 �
1

2
A11 �

1

2
C11. (20)

https://doi.org/10.1088/1742-5468/ab14d7
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After multiplying these inequalities by F 2
1 , we obtain G11F

2
1 � A11F

2
1 /2 � C11F

2
1 /2. 

Then, three dierent bounds on the output entropy production rate follows from equa-
tion (1), in terms of the first coecients of the non-equilibrium conductance, of the 
activity or of the current covariance matrices:

−σ2 � G11F
2
1 η(1− η) �

A11

2
F 2
1 η(1− η) �

C11

2
F 2
1 η(1− η). (21)

Note that equation (21) contains the trade-o derived by Pietzonka et al [13].
In contrast to that, the trade-os obtained by Sasa–Dechant [6], see also Shiraishi 

et al [15] take the following form for Markovian dynamics on a graph:

−σ2 �
A11

2
F 2
1 η(1− η) �

1

2
AφF

2
1 η(1− η), (22)

where Aφ =
∑

(x,y) φ̄
2
1,(x,y)A(x,y) is an average dynamical activity with respect to the 

same function φ̄1,(x,y) introduced in equation (13) to relate physical and edge currents. 
Despite a common origin among all these trade-os (see appendix B for details), we 
note that there is no general ordering between Aφ in equation (22) and the term pro-
portional to C11 in equation (21).

We conclude this section by emphasizing that we focused on the bounds following 
from equation (1) combined with the matrix inequalities of equation (19) or with the 
bound for A11 following from Cauchy–Schwartz inequality, but it is straightforward to 
obtain similar upper bounds for the other inequalities of section 1.

3. Illustrative examples

In this section, we illustrate our power-eciency bounds using two simple models of 
thermodynamic autonomous machines studied in [18]: a unicyclic thermal engine and 
an isothermal molecular motor that has several cycles. We first describe these two mod-
els and then discuss our main results.

3.1. Unicyclic thermal engine

We start with the unicyclic heat-to-heat converter with three states a, b and c of energy 
Ea,Eb,Ec. Each transition is promoted by a dierent heat reservoir at inverse temper-
ature β1, β2, β3. We take the Boltzmann constant kB = 1, and set the energy scale by 
taking β3 = 1. The transition rates are

k(b,a) = Γe−
β1
2
(Eb−Ea), k(a,b) = Γe−

β1
2
(Ea−Eb),

k(c,b) = Γe−
β2
2
(Ec−Eb), k(b,c) = Γe−

β2
2
(Eb−Ec),

k(a,c) = Γe−
β3
2
(Ea−Ec), k(c,a) = Γe−

β3
2
(Ec−Ea),

 (23)

where Γ is the coupling constant to the heat reservoirs which defines the unit of time and 
which we take to be Γ = 1. Since the converter is coupled to three heat reservoirs, the 

https://doi.org/10.1088/1742-5468/ab14d7
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total entropy production rate writes σ = −β1J1 − β2J2 − β3J3, where Ji denotes the heat 
flux from the heat reservoir i to the system. Using energy conservation J1 + J2 + J3 = 0, 
we simplify the total entropy production rate as σ = (β3 − β1)J1 + (β3 − β2)J2. In agree-
ment with section 1, we consider as driving process the heat flow J1 and as output pro-
cess the heat flow J2. Without loss of generality, we assume the following inequalities for 
the reservoir’s temperatures β3 > β1 and β3 > β2 and for the energy levels Eb > Ec > Ea. 
Under these conditions, the driving and output currents are such that J1 > 0 and J2 < 0: 
the system operates as a machine that transfers heat from a cold to a hot reservoir using 
the thermodynamic force generated by the transfer of heat from a hot to a cold reservoir. 
The partial entropy production rates and physical anities are then

σ1 = (β3 − β1)J1, F1 = (β3 − β1)

σ2 = (β3 − β1)J2, F2 = (β3 − β2).
 (24)

We emphasize that this model is unicyclic and hence satisfies the tight coupling 
condition. Therefore, the currents J1 and J2 are proportional to each other and at stall-
ing, i.e. when J2 = 0, the heat to heat converter works reversibly and does not produce 
entropy.

3.2. Molecular motor model

Our second example is a discrete model of a molecular motor [30, 31]. The motor has 
only two internal states and evolves on a linear discrete lattice by consuming Adenosine 
triphosphate (ATP) molecules. The position of the motor is given by two variables: 
the position n on the lattice and y  is the number of ATP consumed. The even and odd 
sites are denoted by a and b, respectively. Note that the lattice of a and b sites extends 
indefinitely in both directions along the n and y  axis; for the spatial direction n, the 
lattice step defines the unit length. There are two physical forces acting on the motor, a 
chemical force controlled by the chemical potential dierence of the hydrolysis reaction 
of ATP, ∆µ and a mechanical force f  applied directly on the motor. The whole system 
is in contact with a heat bath, and we choose to express all quantities in units of kBT . 
Equilibrium corresponds to the vanishing of the two currents, namely the mechanical 
current v̄ which is the average velocity of the motor on the lattice, and the chemical 
current r, which is its average rate of ATP consumption. Since the system operates 
cyclically, the change of internal energy in a cycle is zero and the first law takes the 
form q + r∆µ+ fv̄ = 0 where q is the heat flow coming from the heat bath, r∆µ rep-
resents the chemical work and f v̄ represents the mechanical work; all quantities are 
evaluated in a cycle. Under these conditions, the second law takes the form σ = −q, 
and the entropy production rate takes the following form:

σ = f v̄ + r∆µ. (25)
In the normal operation of the motor, chemical energy is converted into mechanical 
energy, which means that the driving process (1) is the chemical one and the output 
process (2) the mechanical one in agreement with the convention made in this paper. 
Thus, the two partial entropy production rates should be σ1 = r∆µ, with the chemical 
anity F1 = ∆µ and σ2 = fv̄, with mechanical anity F2 = f.
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3.3. Discussion

In order to illustrate the inequalities (19), we plot the (1, 1) coecients of the three 
matrices G, A/2, C/2 and the dynamical activity parameter Aφ in figure 2 for the 
unicyclic engine and the molecular motor as function of the output anities for 
both machines. We confirm the order between the dierent coecients predicted by 
equations (19)–(22).

In the chosen conditions, only the unicyclic engine can approach equilibrium, it 
does so around β2 = 0.3. At this point, all three coecients converge towards the same 
value.

On figure 3, we plot the four studied power-eciency trade-os. We confirm again 
the order among the four trade-os. It can be also observed that in the case of the tight 
coupling machine, the inequality (1) becomes an equality [18].

It is interesting at this point to observe that the quality of the various bounds seems 
to be related to the level of information available about the system. Indeed, the tightest 
bound is the one obtained from the non-equilibrium conductance matrix, which is built 
using the knowledge of the microscopic dynamics of the system. The bound obtained 
from the dynamical activity is less tight, but it also requires less information since only 
time symmetric observables of the microscopic dynamics are used. The bounds deduced 
from the covariance matrix are the loosest bounds, and they indeed require the least 
information, since only information on macroscopic physical currents is needed instead 
of the more detailed stochastic dynamics of edge currents.
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Figure 2. Trade-o coecients versus the force acting on the molecular motor 
in (a) or versus the inverse temperature β2 for the unicyclic thermal engine in 
(b). The green empty squares are the coecient G11 of the conductance matrix, 
the violet circles are the coecient A11 of the activity matrix, the coecient C11 
of the covariance matrix is shown with the red full squares and the input power 
activity Aφ is the blue empty triangles. Insert: a larger view of the main figure. 

For figure (a), the parameters are ∆µ = 20.0, α = 0.57, α′ = 1.3.10−6, ω = 3.5, 

ω′ = 108.15 ε = 10.81, θ+a = 0.25, θ−a = 1.83, θ+b = 0.08, θ−b = −0.16. For (b), they 
are β1 = 0.5, β3 = 1, Γ = 1, Ea  =  1, Eb  =  4 and Ec  =  2.
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4. Conclusion

In this work, we have extended our previous framework on the conductance matrix 
for general thermodynamic machines operating in a non-equilibrium steady state arbi-
trarily far from equilibrium. By parametrizing this conductance matrix in terms of the 
degree of coupling, we obtain various bounds for the input and output power and for 
the total entropy production. It is easy to see that the bounds on the total or partial 
entropy production go beyond the second law of thermodynamics.

While these bounds can be proven generally, they involve a constant factor, a 
coecient of the conductance matrix, which is in general unknown. To make progress, 
we choose a discrete Markov jump process for the microscopic dynamics, which allows 
to calculate explicitly important matrices for this problem, such as the conductance 
matrix, the activity matrix and the covariance matrix. We show that these matrices 
are ordered according to Loewner partial order, and that these matrix inequalities lead 
to an ordered set of power-eciency trade-os.

Our formulation includes a number of already known results such as the power-
eciency trade-o derived by Pietzonka and Seifert or the inequality previously 
obtained by Dechant and Sasa for Langevin systems. We obtain a hierarchy of power-
eciency trade-os, with an order that depends primarily on the level of knowledge of 
the microscopic dynamics. The tightest bound is obtained when the maximum of infor-
mation is available on the microscopic dynamics, while more loose bounds are obtained 
when only coarse-grained information is available.

The present work applies to stationary machines but not to periodically driven ones 
[32, 33]. We have also not considered systems with broken time-reversal symmetry [34] 
for which extensions of this framework could be carried out. We hope to address some 
of these extensions in future work.
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Figure 3. Output entropy production rate as a function of the thermodynamic 
eciency for the molecular motor (a) or the unicyclic thermal engine (b). The 
solid line represents the output entropy production and the symbols represent 
the dierent power-eciency trade-os derived from the coecients represented 
in figure 2 (with the same color code and shape). Inset: zoom in the region of the 
maximum power. Parameters are the same as in figure 2.
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Appendix A. Derivation of the matrix inequalities

Let us consider in a stochastic description of the machine, a long trajectory of duration 
T, and x(t) the label of the state occupied at time t. The empirical density is defined 
as the fraction of time a given trajectory spends in state y  as

py =
1

T

∫ T

0

dtδx(t),y. (A.1)

In the long time limit, p y  tends to πy which is the stationary probability distribution. 
Furthermore, we denote the empirical edge current associated to the net number of 
transitions from y  to x per unit time during a trajectory of duration T by j(x,y), with

j(x,y) =
1

T

∫ T

0

dt
(
δx(t−),yδx(t+),x − δx(t+),yδx(t−),x

)
, (A.2)

where x(t±) denotes the configuration immediately before or after time t. In the long 
time limit, j(x,y) tends to J(x,y), which is the steady state current. Beside these two cur-

rents, let us introduce the current j p
(x,y) that represents the expected edge current given 

the empirical density p and the edge rates

j p
(x,y) = k(x,y)py − k(y,x)px. (A.3)

Finally, we denote by g p
(x,y) the edge rates given p that represents the pairwise geomet-

ric average on direction of each transition rate

g p
(x,y) = 2

√
k(x,y)k(y,x)pypx. (A.4)

The probability distribution P ({ px}, {j(x,y)}) of the empirical density and edge  
cur rents obeys at large time T a large deviation principle yielding

P ({ px}, {j(x,y)}) � e−TI({ px},{j(x,y)}), (A.5)

where I({ px}, {j(x,y)}) is a large deviation function (LDF) [35]. This LDF provides the 
rate at which decays with time the probability that empirical densities and edge cur-
rents remain dierent from their steady state values. This level of description is called 
the level 2.5 in the literature. The LDF at that level for Markov jump processes has an 
explicit form [10]:

I2.5({ px}, { j(x,y)}) =
∑
(x,y)

j(x,y)arcsinh

(
j(x,y)
g p
(x,y)

)
− j(x,y)arcsinh

(
j p
(x,y)

g p
(x,y)

)

+
√

j p
(x,y)

2 + g p
(x,y)

2 −
√
j2(x,y) + g p

(x,y)
2.

 

(A.6)

To make useful predictions based on this LDF one must coarse-grain edge currents 
into physical currents [36], using that the latter are linearly related to the formers. 
Hence, the LDF for physical currents is obtained from equation (A.6) by the following 
contraction:
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I(j) = min
{ px},{..}

I2.5({ px}, { j(x,y)}), (A.7)

where {..} denotes here (and in the following) the minimum over edge currents { j(x,y)} 
that corresponds to the physical current j and respect the stationary condition

∀x,
∑
y

( j(x,y) − j(y,x)) = 0.
 (A.8)

A first bound follows from equation (A.7), once the empirical density {p x} is approxi-
mated by the stationary probability {πx}, namely:

I(j) � min
{..}

I2.5({πx}, { j(x,y)}). (A.9)

By performing a Taylor expansion of I2.5({πx}, { j(x,y)}) around j(x,y) � J(x,y) at second 
order, one obtains an approximated function which we call Iloc({πx}, { j(x,y)}), with

Iloc({πx}, { j(x,y)}) =
∑
(x,y)

( j(x,y) − J(x,y))
2

2
√
J(x,y)

2 + gπ(x,y)
2
=

∑
(x,y)

( j(x,y) − J(x,y))
2

2Ā(x,y)

.
 (A.10)

Therefore, combining equations (A.9) and (A.10) leads to the local bound on current 
LDF

I(j) � min
{..}

I2.5({πx}, { j(x,y)}) � min
{..}

Iloc({πx}, { j(x,y)}). (A.11)

We emphasize that the equation (A.11) is a local bound in the sense that it 
is valid only up to the second order of the Taylor expansion. As shown in [10], a 
closely related bound denoted Iquad leads this time to a global bound, namely 
I2.5({πx}, { j(x,y)}) � Iquad({πx}, { j(x,y)}), with

Iquad({πx}, { j(x,y)}) =
1

4

∑
(x,y)

( j(x, y)− J(x,y))
2
σπ
(x,y)

J2
(x,y)

. (A.12)

In this equation, σπ
(x,y) is the steady state entropy production rate associated to the 

transitions from y  to x defined by

σπ
(x,y) = (k(x,y)πy − k(y,x)πx) ln

k(x,y)πy

k(y,x)πx

. (A.13)

Now, using the relation σπ
(x,y) = J(x,y)F(x,y) and the definition R̄(x,y) = F(x,y)/J(x,y), one 

can write Iquad as

Iquad({πx}, { j(x,y)}) =
1

4

∑
(x,y)

( j(x, y)− J(x,y))
2R̄(x,y). (A.14)

Further, using the general inequality (a− b) ln(a/b) � 2(a− b)2/(a+ b), one deduces 

first that σπ
(x,y) � 2J2

(x,y)/Ā(x,y) and then using equation (A.12) that

Iloc({πx}, { j(x,y)}) � Iquad({πx}, { j(x,y)}). (A.15)
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Using equations (A.7), (A.11) and (A.15), we obtain in the end:

I(j) � min
{..}

Iloc({πx}, { j(x,y)}) � min
{..}

Iquad({πx}, { j(x,y)}). (A.16)

Since we are now minimizing quadratic functions, we can find the minimizer exactly 
as in [18]:

Iloc(j) = min
{..}

Iloc({πx}, { j(x,y)}) =
1

2
(j − J )T ·A−1 · (j − J ) (A.17)

Iquad(j) = min
{..}

Iquad({πx}, { j(x,y)}) =
1

4
(j − J )T ·G−1 · (j − J ) (A.18)

with the expression of the matrix G and A being given by the equations (14) and (16). 
Since

I(J ) = Iloc(J ) = Iquad(J ) = 0 and
dI

dj
(J ) =

dIloc
dj

(J ) =
dIquad
dj

(J ) = 0,

 (A.19)
the inequality (A.16) propagates to second order derivatives:

C−1 � A−1 �
1

2
G−1. (A.20)

Using properties of semi-definite positive matrices [29] ends the proof of equation (19)

G �
A

2
�

C

2
. (A.21)

Appendix B. Bound from an activity ansatz

The computation of conductance matrix and activity matrix in equations (A.17) and 
(A.18) requires the minimization of the bounds. Instead, we can rely on the use of an 
ansatz if we focus on only one current. Let us consider the stochastic current j 1 defined 
as a linear combination of edge currents

j1 =
∑
(x,y)

φ̄1,(x,y)j(x,y). (B.1)

To avoid the minimization in equation (A.16), we use an ansatz on edge current ̃j(x,y)( j1) 
that verifies∑

(x,y)

φ̄1,(x,y)j̃(x,y)( j1) = j1, (B.2)

and the stationary condition

∀x,
∑
y

(j̃(x,y)( j1)− j̃(y,x)( j1)) = 0.
 (B.3)

Following [8], the ansatz

j̃(x,y)( j1) = J(x,y)
j1
J1

 (B.4)
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works and can be used into equation (A.16) yielding

I( j1) � Iloc({πx}, {j̃(x,y)( j1)}) � Iquad({πx}, {j̃(x,y)( j1)}). (B.5)

The second derivative of this equation with respect to j 1 leads to

1

Var( j1)
�

(∑
(x,y)

J2
(x,y)

Ā(x,y)

)

J2
1

�
σ

2J2
1

. (B.6)

Due to Cauchy–Schwarz inequality, we have

J2
1 =


∑

(x,y)

φ̄1,(x,y)J(x,y)




2

�


∑

(x,y)

φ̄2
1,(x,y)Ā(x,y)





∑

(x,y)

J2
(x,y)

Ā(x,y)


 , (B.7)

where actually Ā(x,y) could be arbitrary. Combining equations (B.6) and (B.7) gives 
then

J2
1

σ
�

J2
1

2

(∑
(x,y)

J2
(x,y)

Ā(x,y)

) �
1

2


∑

(x,y)

φ̄2
1,(x,y)Ā(x,y)


 =

1

2
Aφ. (B.8)

This equation is similar to the bound derived for Langevin systems in [6] (see equa-
tion (14) of that reference). It expresses a bound on the square of any current (here 
J2
1) in terms of the total entropy production times a coecient which depends on the 

activity. In diusive systems, this activity may be expressed in terms of the diusion 
coecient of the system. We note that while the linear decomposition of equation (B.1) 
is general, we need to choose the specific function φ̄1,(x,y) introduced in equation (13) in 
order to apply the Cauchy–Schwartz inequality specifically to physical currents.

Notice that the term in the rhs of equation (B.8) could also be obtained by using 
as ansatz

j̃(x,y)( j1) = J(x,y) + ( j1 − J1)
φ̄1,(x,y)Ā(x,y)∑

(x,y) φ̄
2
1,(x,y)Ā(x,y)

, (B.9)

that respect the condition (B.2) but not the stationary condition (B.3). It happens 
that the ansatz (B.9) is the actual miminizer of Iloc({πx}, { j(x,y)}) under the constraint 
(B.2) but without considering the stationary condition. Therefore, pluging the ansatz 
of equation (B.9) inside Iloc({πx}, { j(x,y)}) leads to

Iloc({πx}, {j̃(x,y)( j1)}) =
( j1 − J1)

2

2Aφ

� min
{..}

Iloc({πx}, { j(x,y)}), (B.10)

where as before the minimum of right hand side is carried over { j(x,y)} that corresponds 
to physical current j 1 and respect the stationary condition (B.3). Hence, using equa-
tion (A.17) and by deriving twice with respect to j 1, we obtain the inequality A11 � Aφ 
used in equation (22).

https://doi.org/10.1088/1742-5468/ab14d7


An ordered set of power-eciency trade-os

17https://doi.org/10.1088/1742-5468/ab14d7

J. S
tat. M

ech. (2019) 054002

Appendix C. Illustrative example: conductance and activity matrices

C.1. Unicyclic heat-to-heat converter

Given the rates of the unicyclic heat-to-heat converter, we are able to determine the 
stationary probabilities πa, πb and πc using for instance the spanning tree formula. We 
next compute the stationary cycle current Jc1 and the mean activity on each edge (i, j)

Ā(i,j) = k( j,i)πi + k(i,j)πj. (C.1)

That give us the conductance

G =
Jc1
Fc1

(
(Eb − Ea)

2 (Ec − Eb)(Eb − Ea)

(Ec − Eb)(Eb − Ea) (Ec − Ea)
2

)
, (C.2)

and activity matrix

A =

(
1

Ā(a,b)

+
1

Ā(b,c)

+
1

Ā(c,a)

)−1 ( (Eb − Ea)
2 (Ec − Eb)(Eb − Ea)

(Ec − Eb)(Eb − Ea) (Ec − Ea)
2

)
.

 (C.3)
These expressions are used to draw figures 2(b) and 3(b).

C.2. Molecular motor

The graph of this model includes four bidirectional edges connecting two states. For 
two of these edges, the transitions are passive and do not consume or produce ATP, 
but the other two are active. The eight transition rates associated to these four bidi-
rectional edges are

−→ωb
−1 = α′eθ

+
b f , −→ωb

0 = ω′ eθ
+
b f ,

←−ωa
1 = α′e−ε+∆µ−θ−a f , ←−ωa

0 = ω′ e−ε−θ−a f ,
←−ωb

−1 = α e−θ−b f , ←−ωb
0 = ω e−θ−b f ,

−→ωa
1 = α e−ε+∆µ+θ+a f , −→ωa

0 = ω e−ε+θ+a f ,

 (C.4)

where we have kept the original notation of [30, 31]. In the above equations, θ±i  rep-

resent load distribution factors that are arbitrary except that θ+a + θ−b + θ−a + θ+b = 2  
[31]. Let us orientate all edges from state a to b. Then, the four edge currents and 
anities are

J(1) = πa
←−ωa

1 − πb
−→ωb

−1, F(1) = ln
←−ωa

1πa
−→ωb

−1πB

, (C.5)

J(2) = πa
←−ωa

0 − πb
−→ωb

0, F(2) = ln
←−ωa

0πa
−→ωb

0πB

, (C.6)

J(3) = πa
−→ωa

0 − πb
←−ωb

0, F(3) = ln
−→ωa

0πa
←−ωb

0πB

, (C.7)
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J(4) = πa
−→ωa

1 − πb
←−ωb

−1, F(4) = ln
−→ωa

1πa
←−ωb

−1πB

, (C.8)

in terms of the stationary probabilities of states a or b, denoted πa and πb respectively. 
For the explicit expressions of the probability currents in terms of the transition rates, 

we refer to [30, 31]. If one introduce the edge resistance matrix R̄(i) = F(i)/J(i) with 
i = 1, 2, 3 and 4, the conductance matrix for this model writes

G =
1

ZG

(
(R̄(1) + R̄(4))(R̄(3) + R̄(2)) 2(R̄(4)R̄(2) − R̄(1)R̄(3))

2(R̄(4)R̄(2) − R̄(1)R̄(3)) 4(R̄(1) + R̄(2))(R̄(3) + R̄(4))

)
, (C.9)

with

ZG = R̄(1)R̄(4)R̄(3) + R̄(1)R̄(4)R̄(2) + R̄(1)R̄(3)R̄(2) + R̄(4)R̄(3)R̄(2). (C.10)

The activity matrix is derived in a similar way and we obtain

A =
1

ZA

(
(Ā−1

(1) + Ā−1
(4))(Ā

−1
(3) + Ā−1

(2)) 2(Ā−1
(4)Ā

−1
(2) − Ā−1

(1)Ā
−1
(3))

2(Ā−1
(4)Ā

−1
(2) − Ā−1

(1)Ā
−1
(3)) 4(Ā−1

(1) + Ā−1
(2))(Ā

−1
(3) + Ā−1

(4))

)
, (C.11)

with

ZA = Ā−1
(1)Ā

−1
(4)Ā

−1
(3) + Ā−1

(1)Ā
−1
(4)Ā

−1
(2) + Ā−1

(1)Ā
−1
(3)Ā

−1
(2) + Ā−1

(4)Ā
−1
(3)Ā

−1
(2) (C.12)

and

A(1) = πa
←−ωa

1 + πb
−→ωb

−1, A(2) = πa
←−ωa

0 + πb
−→ωb

0, (C.13)

A(3) = πa
−→ωa

0 + πb
←−ωb

0, A(4) = πa
−→ωa

1 + πb
←−ωb

−1. (C.14)
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