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Linking lineage and population observables in biological branching processes
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Using a population dynamics inspired by an ensemble of growing cells, a set of fluctuation theorems linking
observables measured at the lineage and population levels is derived. One of these relations implies specific
inequalities comparing the population doubling time with the mean generation time at the lineage or population
levels. While these inequalities have been derived before for age-controlled models with negligible mother-
daughter correlations, we show that they also hold for a broad class of size-controlled models. We discuss the
implications of this result for the interpretation of a recent experiment in which the growth of bacteria strains has
been probed at the single-cell level.
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I. INTRODUCTION

The question of how a cell controls its size is a very
old one [1], which despite decades of research is still under
intense focus because the old experiments have only provided
incomplete answers while a new generation of experiments
based on the observation and manipulation of single cells in
microfluidic devices is becoming more and more mature [2].
For instance, with time-lapse single-cell video microscopy,
entire lineages of single cells such as E. coli can be traced over
many generations. These experiments allow one to investigate
mechanisms of cell size control (cell size homeostasis) with
unprecedented statistics both at the single-cell level and at the
level of a population.

Many policies of cell size control have been introduced:
the “sizer” in which the cell divides when it reaches a certain
size, the “timer” in which the cells grows for a specific amount
of time before division, and the “adder” in which cells add
a constant volume each generation [3]. The adder principle
is now favored by many experiments [4–7], yet there is no
consensus on why a specific regulation emerges under certain
conditions and how it is implemented at the molecular level.

Another important question is how to relate measure-
ments made at the lineage and at the population levels. A
classical study revealed the discrepancy between the mean
generation time and the population doubling time [8] in an
age-dependent branching process with no mother-daughter
correlations, called the Bellmann-Harris process in the liter-
ature on branching processes [9]. Importantly, it is still not
known at present how to relate the mean generation time and
the population doubling time in general models of cell size
control.

Inspired by single-cell experiments with colonies of
prokaryotic cells in microfluidic devices [5,10], we consider
continuous rate models (CRMs), based on stochastic differen-
tial equations [4,11]. The population dynamics generated by
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CRMs has an interesting thermodynamic structure, uncovered
in Refs. [12,13], which we also exploit to derive fluctuation
relations. As usual with fluctuation theorems [14], our results
map typical behaviors in one ensemble (here the population
level) to atypical behaviors in another one (here the single
lineage level). A similar connection lies at the basis of an algo-
rithm to measure large deviation functions using a population
dynamics [15,16]. In the mathematical literature on branching
processes, relations of this kind are known as many-to-one
formulas [17]; they explain the existence of a statistical bias
when uniformly choosing one individual in a population as
opposed to following a lineage.

This paper is organized as follows: In Sec. II, we introduce
two different averaging procedures for CRM dynamics, which
we call the tree and the lineage averages. In Sec. III, we define
and study size-controlled models. This includes a derivation
of a fluctuation relation in terms of a quantity which we call
dynamical activity. Such a fluctuation relation maps the single
lineage level and the population level. We test it numerically
and we show that it can be used to determine the population
growth rate from lineage statistics. In Sec. IV, we derive a
second, more general fluctuation relation. We explain why this
result is related to the notion of “fitness landscape” introduced
in Ref. [18], and we derive from it important inequalities
comparing the mean generation times at the lineage and tree
levels with the population doubling time. We then discuss
the implications of our results for the experiment carried
out by Hashimoto et al. [10], in which these inequalities
have been tested. Then, we analyze age models with and
without correlations between mother and daughter cells in
Sec. V. Finally, we conclude in Sec. VI, while some important
technical details are given in the Appendices.

II. TREE AND LINEAGE AVERAGES IN A POPULATION

Let us consider a population of cells as shown in Fig. 1,
which grow by division into only two offsprings at the end
of each cell cycle. This population dynamics can be studied
at three distinct levels: the lineage level (red), the population
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FIG. 1. Representation of the three main levels of description of
the ensemble of cells: the lineage level (bold, red line), the population
snapshot (horizontal, dashed, blue line), and the entire tree (thin,
black line). A lineage average is an average over a single lineage
going forward in time from the ancestor of the colony to its final
state at time t . A tree average is equivalent to the average over all
lineages starting at time t from those cells currently alive and going
backwards in time up to the ancestor of the colony.

snapshot (blue), and the tree level which includes the complete
phylogeny [19].

In the following, we shall introduce two different averages
corresponding to the tree and lineage levels, which are defined
for a fixed initial time t = 0 and final time t of the dynamics
of the population. For a tree average, we consider all the
branches of the tree including all the cells still present at
time t and which will divide only after the time t . This tree
distribution puts an equal weight on the lineages which end at
time t and, from that point, it goes backward in time towards
the original ancestor from which the population originated.
For this reason, this distribution is known in the literature
under the name of retrospective distribution [13] and is equiv-
alently an average over histories, i.e., backward lineages [20].
In contrast to this, what we call in this paper a lineage average
corresponds to an average done over forward lineages, which
go forward in time from the original ancestor of the colony
towards its final state at time t .

For bacteria such as E. coli growing in a rich medium, each
cell cycle is well described by an exponential growth phase
[21], which for the cell cycle i can be parametrized by only
three random variables shown in Fig. 2: the size at birth xi

0,
the growth rate ν i, and the generation time τi.

FIG. 2. Evolution of the cell size x(t ) along a lineage. The cell
cycle i is parametrized by three random variables: the generation time
τi, the growth rate νi, and the size at birth xi

0.

III. RESULTS FOR SIZE-CONTROLLED MODELS

A. Definition of size-controlled models

Let us first consider a model with size-dependent division
rate. The evolution of the number of cells of size x and single-
cell growth rate ν at time t , n(y, t ) with y = (x, ν), obeys the
equation [4,11]

∂t n(y, t ) = −ν∂x[xn(y, t )] − B(y)n(y, t )

+ 2
∫

dy′�(y|y′)B(y′)n(y′, t ), (1)

where B(y) is the division rate and �(y|y′) is the probability
for a newborn cell to have parameters y given that the mother
cell has parameters y′. By integrating Eq. (1) over y using the
condition

∫
dy�(y|y′) = 1, a deterministic equation of evolu-

tion of the total population N (t ) = ∫
dyn(y, t ) is obtained.

The instantaneous growth rate of the population is defined
as �p(t ) = Ṅ/N , while the growth rate of the total volume
of the cells is �V (t ) = V̇ /V with V (t ) = ∫

dyxn(y, t ). When
a steady state for the variable y is reached, both �p and �V

become independent of time and equal to each other [19].
If instead of the full population, we consider the dynamics

at the lineage level, the natural quantity to study is the prob-
ability density of the cell to have size x and growth rate ν at
time t , p(x, ν, t ), which satisfies the evolution equation

∂t p(y, t ) = −ν∂x[xp(y, t )] − B(y)p(y, t )

+
∫

dy′�(y|y′)B(y′)p(y′, t ). (2)

Note the difference with Eq. (1) due to the absence of the
factor 2 in front of the integral, rendering p(y, t ) normalizable
at any time,

∫
p(y, t )dy = 1.

B. Fluctuation theorem for dynamical activity

We now address the problem of connecting lineage to tree
or population snapshot statistics in models with size control.
The evolution of a given cell from time 0 to the time t is
encoded in the trajectory {y}t

0 = {y}.
For the case of a size-controlled model, we derive, in

Appendix A, path probability representations at the popula-
tion and lineage levels, which are given by (A10) and (A9),
respectively. Comparing these two expressions, we see that a
possible way to bring both distributions “closer” together is
to multiply the division rate at the lineage level by the factor
m, and to consider a lineage starting from the same initial
condition as that of the population.

Then, we introduce the dynamical activity Wt ({y}) =∫ t
0 dt ′B(y(t ′)), which quantifies the activity of cell divisions,

and the time averaged population growth rate,

�t = 1

t

∫ t

0
dt ′�p(t ′) = 1

t
ln

N (t )

N (0)
. (3)

After multiplying the relation mentioned above between
path probabilities by an arbitrary trajectory-dependent observ-
able A({x, ν}), and after taking the average, for the special
case where m = 2, one obtains the following fluctuation rela-
tion:

〈A({y})〉tree,B = 〈A({y})eWt ({y})−t�t 〉lin,2B, (4)
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FIG. 3. Illustration of the fluctuation relation in the case of
growth with a constant growth rate ν = 2. (a) Distributions of
dynamical activity at the time t = 2 in a lineage with division rate
2B (blue, filled) and in a tree with division rate B (red, unfilled).
(b) Logarithmic ratio of these probability distributions.

where 〈·〉tree,B denotes a tree average generated by the original
dynamics with a division rate B, while 〈·〉lin,2B denotes a
lineage average with a modified dynamics that has a division
rate 2B. The reason for this modified division rate is that each
cell divides into m = 2 cells, and as a result a factor two
appears at the population level in Eq. (1), which is absent
for the corresponding equation at the lineage level. In the
particular case where the observable A only depends on y(t )
instead of the full trajectory {y}, Eq. (4) relates the lineage
level to the population snapshot level instead of the tree level.
The mapping also requires that the original and the modified
dynamics start with the same initial condition y(0), defined
here in terms of cell size and growth rate.

For the specific choice A({y}) = δ(W − Wt ({y})), Eq. (4)
leads to a Crooks-like relation [14],

Ptree,B(W, t ) = Plin,2B(W, t )eW −t�t , (5)

which relates the distribution of dynamical activity at time t in
a tree [lineage]: Ptree,B(W, t ) [Plin,2B(W, t )]. This relation is il-
lustrated in Fig. 3 for a population of cells growing with a con-
stant single-cell growth rate ν. Numerically, instead of work-
ing directly with Eq. (1), we simulate an equivalent Langevin
equation, which accounts for deterministic growth with the
rate ν and stochastic cell divisions with a rate B(x, ν). In the
simulation, the division has been assumed to be symmetric
and the single-cell growth ν constant, which corresponds to
the particular choice of �(y|y′) = δ(ν − ν ′)δ(x − x′/2). Note
that this dynamics bears some similarity to that of stochastic
resetting introduced in Ref. [22], with the difference that in
our case the resetting of the size is relative to the current size
before division, while in this reference the resetting was to a

FIG. 4. Population growth rate �P vs the mean single-cell
growth rate νm: from a population snapshot (orange circles), from
the growth rate of the total volume (green stars), and from Eq. (6).
Here the cell growth rate is taken from the normal distribution
N (νm, σν ) and B(x, ν ) = νx. Error bars have been obtained by using
the fluctuation relation on 1000 trajectories and then repeating the
estimation another 50 times.

constant position. Another important difference is the absence
of diffusion in our model.

We have used normalized units of time and size, so that
ν = 2 and B(x, ν) = νx in these units. Since �p = �V = ν,
�t = 2, the two distributions measured at the time t = 2
cross as expected at W = 4 [Fig. 3(a)]. Figure 3(b) confirms
that the slope of the logarithmic ratio of the two probability
distributions is indeed −1 as expected from Eq. (5).

Let us emphasize the following points concerning our first
main result: This fluctuation relation is very general; it holds
whether or not the single-cell growth-rate fluctuates, i.e., for
arbitrary forms of the kernel � and arbitrary division rate
B(x, ν). There is no requirement that the population should be
stationary either at time 0 or at time t . Further, it generalizes
to the case that each cell has m offsprings instead of two,
provided that this number m is independent of the state of
the system y and that the modified lineage dynamics has a
division rate mB(x, ν), as shown in Appendix A 3.

The normalization of Ptree,B(W, t ) in (5) leads to the rela-
tion

�t = 1

t
ln

∫
dWeW Plin,2B(W, t ), (6)

which could be used either to infer the population growth rate
from lineage trajectories or to infer the form of the division
rate B using lineage and population trajectories [23]. In the
next section below, we provide such a numerical illustration.

C. Application to the determination of a population growth rate

Since the variability of single-cell growth rate is known to
be important experimentally [21], we now discuss its role on
the population growth rate in light of our results. A simple
way to study this question in a simulation is to assume that the
single-cell growth rate ν is distributed according to a normal
distribution of mean νm and variance σν . This is what we have
done in Fig. 4, where a division rate of the form B(x, ν) = νx
has been used. Although the values taken by ν are then uncor-
related from one division to the next, correlations between the
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mother and daughter generation times are still present due to
the size dependence of the division rate. This figure compares
several determinations of the population growth rate �p as
function of νm. In the absence of variability where σν = 0, we
have �p = νm, which is shown as a black dashed line in the
figure. In the presence of variability, this figure confirms that
the growth rate of the total volume �V equals the growth rate
of the population, where both of them have been measured
from the statistics of the final population at a fixed time.
Importantly, such a determination of the population growth
rate also agrees (within errors bars) with the one based on
Eq. (6) using lineage trajectories. Therefore, this shows that
Eq. (6) could be used as a numerical method to determine a
population growth rate based on lineage statistics.

Another striking feature of Fig. 4 is that regardless of the
determination of �p, all the points are below the dashed line.
The interpretation is that in a snapshot at time t , it is less likely
to see cells with a short generation time (corresponding to
large single-cell growth rates), and therefore the distribution
is biased towards small single-cell growth rate [19]. Since
the population growth rate generally increases with respect
to the single-cell growth rate νm, this bias leads to a decrease
of the population growth rate with respect to the case of no
variability in the single-cell growth rate.

As mentioned in Sec. I, the fluctuation relation of Eq. (4)
includes such a statistical bias: when uniformly choosing
one individual in a population, an individual belonging to a
lineage with prolific ancestors is more likely to be chosen,
and as a result, the jump rate on a lineage must be multiplied
by the mean number of offsprings. Although variability in the
single-cell growth rate also introduces a form of statistical
bias as explained above, the bias is not exactly the same
one as that contained in the fluctuation relation. We would
like to point out a comprehensive theoretical study on the
effect of variability on the population growth rate, namely,
[24]. This study confirms that in the case of size models with
independent and identically distributed single-cell growth
rates, variability indeed lowers the Malthusian growth rate
as observed in Fig. 4. This work also discusses age models,
with and without correlations in single-cell growth rates, and
concludes that in general, variability may lead to either a
positive or negative trend on the population growth rate.

D. Consequences for the distribution of generation times

An important quantity in population dynamics is the distri-
bution of generation times f (τ ). This quantity can be evalu-
ated from the observable [25]

AK = 1

K

K∑
k=1

δ(τ − τk ), (7)

where the index k runs over all the K cell cycles which have
appeared in the trajectory that starts from t = 0 to final time
t . This observable can be evaluated either on a lineage or on
a tree. By reporting AK as the observable A in Eq. (4), one
deduces the relation

ftree,B(τ ) =
〈

1

K

K∑
k=1

δ(τ − τk )eWt −t�t

〉
lin,2B

, (8)

FIG. 5. (a) Mean generation times evaluated in a tree (red circles)
and in lineage (violet triangles) against the division rate B. Theo-
retical predictions are shown as dashed lines and the doubling time
Td = ln(2)/B is shown as a dotted line. (b) Distribution of generation
times in the tree ftree(τ ). In these figures, the division rate B and the
single-cell growth rate ν are constant and equal to each other.

where a summation over the random variable K and a
dependence on the final time t are implicit. In the par-
ticular case where the division rate B is constant, Wt =
t�t and, therefore, ftree,B(τ ) = flin,2B(τ ). In this case, the
generation-time distribution in a lineage is the simple ex-
ponential flin,B(τ ) = B exp (Bτ ) with mean 1/B. It follows
that ftree,B(τ ) = 2B exp (2Bτ ) with mean 1/(2B). Figure 5
confirms that the distribution of generation times has the
expected properties.

IV. A SECOND FLUCTUATION THEOREM TO RELATE
LINEAGE AND TREE STATISTICS

When the division rate B is not constant, the distribution
of generation times will no longer be exponential, but we
may still wonder how mean generation times observed at the
lineage and tree levels compare to each other. In order to
address this issue, we derive a different fluctuation theorem
that connects this time the lineage and tree statistics with the
same division rate B. More precisely, it follows from a direct
comparison of (A10) and (A9) taking again P0 = p0. Since the
division rate is the same in both probability distributions, we
stick to the notations introduced above, except that now the
index B will be omitted.
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This allows one to write

P tree[{xk, νk, tk}] = P lin[{xk, νk, tk}] exp[K ln m − t�t ]. (9)

Now, by multiplying the above relation by an arbitrary trajec-
tory observable A and taking m = 2, we obtain

〈A({y})〉tree = 〈A({y})eK ln 2−t�t 〉lin, (10)

where K = K ({y}) counts as in Eq. (7) the number of divi-
sions.

In the particular case where A({y}) = δ(y − y(t ))δK,K (t ),
Eq. (10) leads, upon averaging, to a relation between the joint
probability distributions of size, growth rate, and number of
divisions at the lineage and tree levels [18],

Ptree(x, ν, K ) = 2K e−�p t Plin(x, ν, K ), (11)

which we call a local fluctuation relation. Averages over
lineages within a population can be carried out with re-
spect to either a chronological or a retrospective distribution
[12,13,25], which correspond, respectively, to our lineage and
tree probability distributions. Let us briefly comment on a
connection to a discussion presented in Ref. [18]. Elimination
of K in Eq. (11) leads to a fluctuation theorem only involving
phenotypic traits x and ν:

Ptree(x, ν) =
∑

K

Ptree(x, ν, K )

= e−�p t
∑

K

2K Plin(x, ν, K )

= e−�p t Plin(x, ν)
∑

K

2K Rlin(K|x, ν)

≡ e[h(x,ν)−�p]t Plin(x, ν), (12)

where we have introduced the probability of the number of
division events conditioned on size and growth rate at the
lineage level, Rlin(K|x, ν), and the equivalent of the “fitness
landscape” of Ref. [18] reads

h(x, ν) = 1

t
ln〈2K |x, ν〉 = 1

t
ln

[∑
K

2K Rlin(K|x, ν)

]
. (13)

By summing over K in Eq. (11), one obtains

Ptree(x, ν) = e[h(x,ν)−�p]t Plin(x, ν), (14)

in terms of a function h(x, ν) called fitness landscape in
Ref. [18]. Equations (11)–(14) show that the knowledge of
the two phenotypic probability distributions Ptree and Plin can
be used to infer a fitness function for size and growth rate.

A. Inequalities for mean generation times

Let us also introduce the Kullback-Leibler divergence be-
tween two probabilities p and q:

D(p|q) =
∫

dx p(x) ln
p(x)

q(x)
� 0. (15)

Using the fluctuation relation of Eq. (9), we obtain

D(P lin|P tree) = −〈K〉lin ln 2 + t�t . (16)

On large times t , we can use the relation 〈τ 〉lin = t/〈K〉lin,
which, together with the definition of the population doubling

FIG. 6. Mean generation times measured in a lineage or in a
tree vs the exponent α entering in the division rate B(x, ν ) = νxα .
The dashed line represents the doubling time ln 2/�, the single-cell
growth rate is ν = 2, and values α ∈ [1, 16] are shown.

time Td = ln 2/�t , leads to the right inequality in

〈τ 〉tree � Td � 〈τ 〉lin, (17)

while the left inequality follows very similarly using
D(P tree|P lin).

In the case that B is constant, as shown in Fig. 5(a),
Eq. (17) is trivially satisfied. For B nonconstant of the form
νxα , the inequalities are verified numerically in Fig. 6. This
figure shows that the mean generation time for lineage (tree)
approaches the doubling time in the limit of large α because in
this limit the distribution of generation times becomes peaked
at Td .

B. Illustration of the inequalities based on experimental data

In this section, we present an illustration of the above
inequalities, namely, Eq. (17), using the experimental data
of Hashimoto et al. [10]. In this experiment, the single-cell
growth dynamics of a population of E. coli placed in a constant
environment has been tracked in a flow cytometer. From
an analysis of single-cell lineages, this experiment yields
measurements of the population doubling time, together with
the two mean generation times discussed above. The termi-
nology used in this paper is different from the one we have
introduced here, but one can show that the distributions g and
g∗ introduced in that work correspond to what we call the
lineage and tree distributions, respectively.

In Fig. 3(b) of the main text of Ref. [10], the mean
generation time along a lineage is shown as a function of
the population doubling time Td for various bacteria strains,
which illustrates the right inequality of Eq. (17). Fortunately,
in the supplemental material of that paper, the data needed to
plot the tree average are also given. For this reason, we show
in Fig. 7 the combined data, which illustrates both inequalities
of Eq. (17).

These data have been interpreted in the framework of an
age-controlled model, assuming negligible mother-daughter
correlations, which the authors have checked with their data
[10]. They have also shown theoretically, as we also find in
the next section devoted to age models, that Eq. (17) hold
for the age-controlled model assuming no mother-daughter
correlations. The important point we would like to make
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FIG. 7. Mean generation time evaluated on a tree (blue filled
circles) and on a lineage (red filled squares) normalized by the
population doubling time Td as a function of the population doubling
time Td . These data have been extracted from [10].

here is that this experimental data shown in Fig. 7 are also
fully compatible with our predictions for size-control models
according to our Eq. (17). The strength of our derivation lies
precisely in the fact that this result holds for a broad class of
size-controlled models, without having to prescribe a precise
form of the division rate or of the kernel �.

V. RESULTS FOR AGE-CONTROLLED MODELS

A. Definition of age-controlled models

When the division rate depends on the age of the cells
instead of their size, the structure of the model is rather dif-
ferent from that of the previous section. Let us now introduce
a further distinction between two types of age models. In the
first type, the interdivision times of mother and daughter cells
are uncorrelated, and the division rate is determined by the
age of the cells only. Such a model is usually termed an in-
dependent generation times (IGT) model or Bellmann-Harris
process [9]. In the second type of models, the division rate
may depend on other variables besides the age and, as a result,
mother-daughter correlations will be present. Although many
results for IGT models have already appeared in the literature,
it is necessary to go through them in order to understand what
changes when correlations are present.

In the case of the IGT type of models, the density of cells
having age a in the population at time t , n(a, t ), satisfies the
evolution equation

(∂t + ∂a)n(a, t ) = −B(a)n(a, t ), (18)

with the boundary condition

n(0, t ) = 2
∫ ∞

0
B(a)n(a, t )da. (19)

As before, B(a) denotes the age-dependent division rate.
The physical interpretation of the boundary condition (19)
is clear: Each dividing cell gives rise to two newborn cells
(i.e., two cells with age a = 0). The total number of cells in
the population at time t follows by integration of the density,
N (t ) = ∫

n(a, t )da.
As in the case of size control, lineage dynamics can be

directly encoded in the evolution of the age distribution. Such

dynamics reads

(∂t + ∂a)p(a, t ) = −B(a)p(a, t ), (20)

which is complemented by the boundary condition,

p(0, t ) =
∫ ∞

0
B(a)p(a, t )da, (21)

so that probability is conserved and p(a, t ) is normalized.
In the second type of models, correlations in the interdivi-

sion times are accounted for by adding an extra dependence of
the division rate on the growth rate, B(a, ν), while introducing
at the same time correlations between the growth rate of
mother and daughter cells. The model then reads

(∂t + ∂a)n(a, ν, t ) = −B(a, ν)n(a, ν, t ), (22)

n(0, ν, t ) = 2
∫ ∞

0
da

∫ ∞

0
dν ′�(ν|ν ′)B(a, ν ′)n(a, ν ′, t ),

(23)

at the population level, and

(∂t + ∂a)p(a, ν, t ) = −B(a, ν)p(a, ν, t ), (24)

p(0, ν, t ) =
∫ ∞

0
da

∫ ∞

0
dν ′�(ν|ν ′)B(a, ν ′)p(a, ν ′, t ),

(25)

at the lineage level.

B. Generation-time distribution

Beyond cell size-control models, one can also consider
age models, which may or may not have mother-daughter
correlations. Let us first consider the case where correlations
are absent, the so-called IGT model, and let us focus on the
distribution of generation times either in a lineage or in a
population.

As in the case of size control, the lineage dynamics of age-
structured models can be directly encoded in the evolution of
the age distribution, as prescribed by Eqs. (20) and (21). Let
us consider steady-state conditions,

∂a p(a) = −B(a)p(a), (26)

p(0) =
∫ ∞

0
B(a)p(a)da. (27)

A nice feature of age models is that the generation-time
distribution can be accessed directly. This is so because
generation-time distribution is the age distribution of the
dividing cells. We proceed to compute this distribution for
individual lineages in age-structured IGT models. First, note
that from (26) immediately follows that

p(a) = p(0) exp

[
−

∫ a

0
B(a′)da′

]
. (28)

Relying on the relation between generation-time distribution
and age distribution of dividing cells, we can write

flin(τ ) = B(τ )p(τ )∫ ∞
0 B(a)p(a)da

≡ B(τ ) exp

[
−

∫ τ

0
B(a)da

]
,

(29)

where we have used (27) and (28).
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Now in order to obtain the distribution of generation times
at the population level, we start from Eqs. (18) and (19).
Again, we focus on stationary conditions for which the total
number of cells in the population grows exponentially, as
N (t ) = e�pt . In that case, the density can be written in terms
of the stationary probability density of cells with a given
age as n(a, t ) = e�pt P(a), where P(a) is the stationary age
distribution of the population. We have

∂aP(a) = −[�p + B(a)]P(a), (30)

with the boundary condition

P(0) = 2
∫ ∞

0
B(a)P(a)da. (31)

It is worth noting that normalization of P(a) in (30) leads,
using (31), to the following identity:

�p =
∫ ∞

0
B(a)P(a)da ≡ 1

2
P(0). (32)

We can now proceed to compute the generation-time distribu-
tion by computing the age distribution of dividing cells. We
have, first, for the stationary distribution from (30),

P(a) = P(0) exp

[
−�pa −

∫ a

0
B(a′)da′

]

≡ 2�p exp

[
−�pa −

∫ a

0
B(a′)da′

]
, (33)

where we have also used (32). Let us highlight an important
relation for IGT models obtained from the normalization of
P(a) in Eq. (33):∫ ∞

0
exp

[
−�pa −

∫ a

0
B(a′)da′

]
da = 1

2�p
. (34)

We can now calculate the generation-time distribution,
which reads

ftree(τ ) = B(τ )P(τ )∫ ∞
0 B(a)P(a)da

= 2B(τ ) exp

[
−�pτ −

∫ τ

0
B(a)da

]
. (35)

Reading now from the result for the lineage, given by Eq. (29),
we obtain

ftree(τ ) = 2 flin(τ )e−�pτ , (36)

which corresponds to the result derived in Ref. [10] with the
identification of their generation-time distribution g (g∗) with
our distributions flin ( ftree).

Using Eq. (36), we have, for instance,

D( ftree|| flin) =
∫ ∞

0
ftree(τ ) ln

ftree(τ )

flin(τ )
dτ

= ln 2

[
1 − 〈τ 〉tree

Td

]
� 0

⇒ 〈τ 〉tree � Td , (37)

where as usual the population doubling time reads Td =
ln 2/�p. It is straightforward to prove the second inequality

using the same technique. We then conclude that for IGT
models, one has the same result as obtained for size-structured
populations in Eq. (17), i.e.,

〈τ 〉tree � Td � 〈τ 〉lin. (38)

C. Beyond uncorrelated age models

In view of the results of the previous section, it is natural to
ask what happens in the more complex case in which mother-
daughter correlations are present. In Appendix B, we derived
a generalization of Eq. (36) for that case, namely,

ftree(τ, ν) = 2
ρ tree

b (ν)

ρ lin
b (ν)

flin(τ, ν)e−�pτ , (39)

where ρ lin
b (ν) [ρ tree

b (ν)] represent the growth-rate distributions
of newborn cells at the lineage [tree] level. The presence of
these two probability distributions is entirely due to mother-
daughter correlations. As a result, the inequalities (17) [iden-
tical to (38)] do not necessarily hold for age models with
correlations. An example where they are indeed violated can
be found in the model with correlated generation times studied
in Ref. [26] in some range of parameters.

VI. CONCLUSION

In conclusion, we have established several fluctuation re-
lations which relate observables measured at the lineage and
tree levels. We have deduced from the second fluctuation
relation that mean generation time in a lineage is larger than
the population doubling time, while mean generation time
in a tree is smaller than the population doubling time. We
have found that the experimental data of Hashimoto et al.
fully confirm this observation [10]. We conclude from this
that these data are compatible either with the uncorrelated age
models used by these authors to analyze their data or with the
class of cell size-control mechanisms considered in this paper.

Our approach being general, it could be extended to cover
more complex cases such as asymmetric divisions relevant for
yeast cells and nonexponential regimes of growth, relevant for
eukaryotes and other mechanisms of cell aging [27]. While
we have mainly focused on the control of the size variable,
extension of this formalism to other variables not directly
linked to cell size is possible, with one choice being, for
instance, the protein copy numbers [20,21].

We also find that the variability of single-cell growth has a
negative impact on the population growth rate in the absence
of mother-daughter growth-rate correlations when the division
rate is B(x, ν) = νx. A positive impact due to correlations in
the interdivision times has been reported in another study [26],
while more generally a positive or negative impact should be
expected depending on the form of the division rate [24]. All
of these recent results suggest that generation times are under
a strong evolutionary pressure in which single-cell variability
and correlations over generations [28] play an important role.

In the future, we would like to study systems where the
division rate is controlled simultaneously by the size and the
age of the cell, which represents a situation of major biological
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relevance [29]. Finally, while this work was under review,
two new studies of cell growth dynamics have appeared,
which relate either to our pathwise formulation [30] or to our
analysis of generation-time distributions [31].
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APPENDIX A: PATH INTEGRAL REPRESENTATION OF
THE DYNAMICS FOR SIZE-CONTROLLED MODELS

1. Population level

Let us start by building a path integral representation
associated to the evolution of the number density of cells in the
population case, given by Eq. (1). Here, we will allow for an
arbitrary number of offsprings m for generality, although only
m = 2 was considered above. We emphasize that m should
be independent of the state of the system. Let us treat the
following term:

f (y, t ) = m
∫

dy′�(y|y′)B(y′)n(y′, t ), (A1)

in Eq. (1), as a perturbation. The growth propagator GB of the unperturbed dynamics is such that

∂t GB(x, ν, t |x′, t ′) = −ν∂x[xGB(x, ν, t |x′, t ′)] − B(x, ν)GB(x, ν, t |x′, t ′), (A2)

with initial condition GB(x, ν, t ′|x′, t ′) = δ(x − x′). Then, using these equations, one can check that

n(x, ν, t ) =
∫ ∞

0
dx0 GB(x, ν, t |x0, 0)n0(x0, ν) +

∫ t

0
dt ′

∫ ∞

0
dx′ GB(x, ν, t |x′, t ′) f (x′, ν, t ′) (A3)

is equivalent to the initial problem given in Eq. (1). By explicitly using the definition of f from Eq. (A1), one obtains

n(x, ν, t ) =
∫ ∞

0
dx0 GB(x, ν, t |x0, 0)n0(x0, ν) + m

∫ t

0
dt1

∫ ∞

0
dx1 GB(x, ν, t |x1, t1)

×
∫ ∞

0
dν0

∫ ∞

0
dz �(x1, ν, |z, ν0)B(z, ν0)n(z, ν0, t1), (A4)

which allows one to find an explicit solution for n(x, ν, t ) iteratively.
The explicit solution of Eq. (A2) is

GB(x, ν, t |x′, t ′) = δ(x − x′eν(t−t ′ ) ) exp

[
−

∫ t

t ′
dτB(x′eν(τ−t ′ ), ν)

]
, (A5)

which allows us to write

n(x, ν, t ) =
∫ ∞

0
dx0 δ(x − x0eνt ) exp

[
−

∫ t

0
dτB(x0eντ , ν)

]
n0(x0, ν)

+ m
∫ t

0
dt1

∫ ∞

0
dν0

∫ ∞

0
dx1

∫ ∞

0
dx0 δ(x − x1eν(t−t1 ) ) exp

[
−

∫ t

t1

dτB(x1eν(τ−t1 ), ν)

]

× �(x1, ν, |x0eν0t1 , ν0)B(x0eν0t1 , ν0) exp

[
−

∫ t1

0
dτB(x0eν0τ , ν0)

]
n0(x0, ν0) + · · · , (A6)

or, more compactly,

n(x, ν, t ) =
∞∑

K=0

mK
∫ t

0
dtK . . .

∫ t2

0
dt1

∫ ∞

0

K∏
k=0

dxk dνk δ(ν − νK )δ(x − xK eνK (t−tK ) ) n0(x0, ν0)

× exp

[
−

∫ t

0
dτB(x(τ ), ν(τ ))

] K∏
k=1

T(xk, νk, |xk−1eνk−1(tk−tk−1 ), νk−1), (A7)

where trajectories explicitly appearing in the exponential in the right-hand side of (A7) are given as ν(τ ) = νk , and x(τ ) =
xk exp[νk (τ − tk )], for τ ∈ (tk, tk+1], while k = 0, 1, . . . , K . In our notations, t0 = 0 and tK+1 = t . In addition, the transition
matrix is given as T(x, ν|x′, ν ′) = �(x, ν|x′, ν ′)B(x′, ν ′).

The last step now consists in noticing that the object propagating trajectories from t0 = 0 up to time t in (A7) is not yet
a path probability because it is not properly normalized. To deal with this issue, it is good to pass from number densities to
population-level probability densities, P(x, ν, t ) = N (t )−1n(x, ν, t ) and P0(x, ν) = N (0)−1n0(x, ν). We can now write in terms
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of these quantities,

P(x, ν, t ) =
∞∑

K=0

∫ t

0
dtK . . .

∫ t2

0
dt1

∫ ∞

0

K∏
k=0

dνk

∫ ∞

0

K+1∏
k=0

dxk δ(ν − νK )δ(x − xK+1)P tree
B [{xk, νk, tk}], (A8)

where the object

P tree
B [{xk, νk, tk}] = mK δ(xK+1 − xK eνK (t−tK ) ) exp

[
−t�t −

∫ t

0
dτB(x(τ ), ν(τ ))

]

×
K∏

k=1

T(xk, νk, |xk−1eνk−1(tk−tk−1 ), νk−1)P0(x0, ν0) (A9)

is now properly normalized and can be identified with the correct path probability generating averages of all observables related
to the number density at the population level. We have added a subscript B to indicate that the division rate is given by B(x, ν).
This will be important later in the derivation of fluctuation theorems. Note that when passing from densities to probability
densities, a new term has appeared in the argument of the exponential, namely, �t , which is connected to the population growth
rate, �p, by Eq. (3).

2. Lineage level

The starting point to derive the path probability for lineage observables is the evolution equation for the probability density
of size and growth rate, given by Eq. (2). Except for the absence of the factor two in front of the integral, the structure of the
equations is the same and the derivation follows along exactly as in the population case. We provide the final result:

P lin
B [{xk, νk, tk}] = δ(xK+1 − xK eνK (t−tK ) ) exp

[
−

∫ t

0
dτB(x(τ ), ν(τ ))

]

×
K∏

k=1

T(xk, νk, |xk−1eνk−1(tk−tk−1 ), νk−1)p0(x0, ν0), (A10)

which can be readily shown to be properly normalized. Here, p0 is the distribution of initial conditions for the lineage. Note that
we have introduced p0, which could be different from the P0 introduced earlier as the initial condition of the population.

3. Derivation of fluctuation relations

We can now compare path probability representations at the population and lineage levels given by (A10) and (A9) with each
other. We see that a possible way to bring both distributions “closer” together is to multiply the division rate at the lineage level
by the factor m, and to consider a lineage starting from the same initial condition as that of the population. A possible choice of
this initial condition consists, for instance, in considering a population dynamics starting from a single cell.

In that case, we have

P lin
mB[{xk, νk, tk}] = mK δ(xK+1 − xK eνK (t−tK ) ) exp

[
−m

∫ t

0
dτB(x(τ ), ν(τ ))

]

×
K∏

k=1

T(xk, νk, |xk−1eνk−1(tk−tk−1 ), νk−1)P0(x0, ν0). (A11)

Then, the following relation holds from direct comparison of (A11) and (A9):

P tree
B [{xk, νk, tk}] = P lin

mB[{xk, νk, tk}] exp

[
(m − 1)

∫ t

0
dτB(x(τ ), ν(τ )) − t�t

]
. (A12)

APPENDIX B: FLUCTUATION THEOREM FOR CORRELATED AGE MODELS

1. Lineage dynamics

We now consider models in which interdivision times are correlated. The natural way in which these correlations arise is by
inter-cell-cycle growth-rate fluctuations, as given by Eqs. (24) and (25). Growth-rate correlations are encoded in �, which is a
properly normalized conditional probability. Again, we will focus on stationary conditions. It is simple to see from (24) that one
can formally write the stationary distribution as

p(a, ν) = p(0, ν) exp

[
−

∫ a

0
B(a′, ν)da′

]
. (B1)
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To determine p(0, ν), we use (25) and (B1),

p(0, ν) =
∫ ∞

0
da

∫ ∞

0
dν ′�(ν|ν ′)B(a, ν ′)p(0, ν ′) exp

[
−

∫ a

0
B(a′, ν ′)da′

]

= −
∫ ∞

0
dν ′�(ν|ν ′)p(0, ν ′)

∫ ∞

0
da

d

da
exp

[
−

∫ a

0
B(a′, ν ′)da′

]
, (B2)

from where we get the following integral equation:

p(0, ν) =
∫ ∞

0
�(ν|ν ′)p(0, ν ′) dν ′. (B3)

The generation-time distribution can now be determined, again, as the age distribution of dividing cells. It is worth considering
a slightly more general object, i.e., the joint probability distribution of interdivision time and growth rate,

flin(τ, ν) = B(τ, ν)p(τ, ν)∫ ∞
0 da

∫ ∞
0 dν B(a, ν)p(a, ν)

= B(τ, ν)p(0, ν) exp
[− ∫ τ

0 B(a, ν)da
]

∫ ∞
0 p(0, ν ′) dν ′ . (B4)

This result can be written in a more illuminating way by noticing that the growth-rate distribution of newborn cells can be
identified as

ρ lin
b (ν) = p(0, ν)∫ ∞

0 p(0, ν ′) dν ′ . (B5)

Furthermore, due to the linearity of Eq. (B3) and the fact that ρ lin
b (ν) differs from p(0, ν) only in a multiplicative constant, we

have that ρ lin
b (ν) satisfies

ρ lin
b (ν) =

∫ ∞

0
�(ν|ν ′)ρ lin

b (ν ′) dν ′. (B6)

These observations then lead to the final result,

flin(τ, ν) = ρ lin
b (ν)B(τ, ν) exp

[
−

∫ τ

0
B(a, ν)da

]
. (B7)

2. Population dynamics

Let us now consider the population level. The stationary equation for the population age distribution reads

∂aP(a, ν) = −[�p + B(a, ν)]P(a, ν), (B8)

with boundary condition

P(0, ν) = 2
∫ ∞

0
da

∫ ∞

0
dν ′�(ν|ν ′)B(a, ν ′)P(a, ν ′). (B9)

We then have

P(a, ν) = P(0, ν) exp

[
−�pa −

∫ a

0
B(a′, ν)da′

]
. (B10)

Note that the normalization of P gives the following condition:

�p =
∫ ∞

0
da

∫ ∞

0
dν B(a, ν)P(a, ν) =

∫ ∞

0
dν P(0, ν)

∫ ∞

0
da B(a, ν) exp

[
−�pa −

∫ a

0
B(a′, ν)da′

]

= −
∫ ∞

0
dν P(0, ν)

∫ ∞

0
da

(
d

da
+ �p

)
exp

[
−�pa −

∫ a

0
B(a′, ν)da′

]

=
∫ ∞

0
dν P(0, ν) − �p

∫ ∞

0
dν P(0, ν)�(ν), (B11)

where we have used (B10) and introduced the function

�(ν) =
∫ ∞

0
da exp

[
−�pa −

∫ a

0
B(a′, ν)da′

]
. (B12)

We can thus write, for the growth rate of the population,

�p =
∫ ∞

0 P(0, ν) dν

1 + ∫ ∞
0 P(0, ν)�(ν) dν

. (B13)
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On the other hand, integrating directly in (B10), we get

1 =
∫ ∞

0
da

∫ ∞

0
dν P(0, ν) exp

[
−�pa −

∫ a

0
B(a′, ν)da′

]
=

∫ ∞

0
P(0, ν)�(ν) dν, (B14)

so we have

�p = 1

2

∫ ∞

0
P(0, ν) dν. (B15)

As before, we can find an equation for P(0, ν) using (B9) and the solution for P(a, ν), Eq. (B10):

P(0, ν) = 2
∫ ∞

0
da

∫ ∞

0
dν ′�(ν|ν ′)P(0, ν ′) B(a, ν ′) exp

[
−�pa −

∫ a

0
B(a′, ν ′)da′

]

= −2
∫ ∞

0
dν ′�(ν|ν ′)P(0, ν ′)

∫ ∞

0
da

(
d

da
+ �p

)
exp

[
−�pa −

∫ a

0
B(a′, ν ′)da′

]

= 2
∫ ∞

0
dν ′�(ν|ν ′)P(0, ν ′) − 2�p

∫ ∞

0
dν ′�(ν|ν ′)P(0, ν ′)

∫ ∞

0
da exp

[
−�pa −

∫ a

0
B(a′, ν ′)da′

]
, (B16)

so we then have

P(0, ν) = 2
∫ ∞

0
dν ′�(ν|ν ′)[1 − �p�(ν ′)]P(0, ν ′). (B17)

Let us now write the joint probability distribution of interdivision times and single-cell growth rate:

ftree(τ, ν) = B(τ, ν)P(τ, ν)∫ ∞
0 da

∫ ∞
0 dν B(a, ν)P(a, ν)

= P(0, ν)

�p
B(τ, ν) exp

[
−�pτ −

∫ τ

0
B(a, ν)da

]
. (B18)

The condition (B15) implies that P(0, ν)/�p = 2ρ tree
b (ν), where

ρ tree
b (ν) = P(0, ν)∫ ∞

0 P(0, ν) dν
(B19)

can be identified, as we did in the lineage case, with the growth-rate distribution of newborn cells, now at the tree level. We then
have

ftree(τ, ν) = 2ρ tree
b (ν)B(τ, ν) exp

[
−�pτ −

∫ τ

0
B(a, ν)da

]
. (B20)

Note once more that the linearity of Eq. (B17) and the fact that P(0, ν) and ρ tree
b (ν) differ only on a multiplicative factor lead to

the equation satisfied by ρ tree
b ,

ρ tree
b (ν) = 2

∫ ∞

0
dν ′�(ν|ν ′)[1 − �p�(ν ′)]ρ tree

b (ν ′). (B21)

If we now compare (B20) and (B7), we readily obtain Eq. (39). Before closing this paragraph, some comments are in
order. First, note that as Eqs. (B6) and (B21) are clearly different, one has ρ lin

b (ν) 
= ρ tree
b (ν). Nevertheless, in the absence of

fluctuations, when �(ν|ν ′) = δ(ν − ν ′), we have ρ lin
b (ν) = ρ tree

b (ν). To illustrate this, let us consider, for instance, a population
starting from a single cell with growth rate ν0. As the growth rate remains the same in all cell cycles, we have ρ lin

b (ν) = ρ tree
b (ν) ≡

δ(ν − ν0) at all times. Then, Eq. (B6) becomes tautological, while Eq. (B21) leads to the identity

2[1 − �p�(ν0)] = 1, (B22)

which is precisely the relation (34) found for IGT models [recall the definition of �; see (B12)].

3. Inequalities in correlated age models

Let us now analyze the consequences of the generalized relation (39) for the inequalities. We have, for instance,

D( ftree|| flin) =
∫

ftree(τ, ν) ln
ftree(τ, ν)

flin(τ, ν)
dτdν = ln 2

[
1 − 〈τ 〉tree

Td

]
+

∫ ∞

0
f̃tree(ν) ln

ρ tree
b (ν)

ρ lin
b (ν)

dν � 0, (B23)

where f̃tree(ν) = ∫
dτ ftree(τ, ν) is the marginal distribution of the growth rate of the dividing cells. This result implies, in

particular, that

Td − 〈τ 〉tree � − Td

ln 2

∫ ∞

0
f̃tree(ν) ln

ρ tree
b (ν)

ρ lin
b (ν)

dν. (B24)
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Given that the quantity in the right-hand side of (B24) does not have a definite sign (in particular, it is not necessarily
positive), in this case the left inequality in (38) [and Eq. (17)] may be violated. Repeating a similar argument, one arrives at the
same conclusion for the right inequality.
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