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Optics of a Faraday-active Mie sphere
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We present an exact calculation for the scattering of light from a single sphere made of a Faraday-active ma-
terial into first order of the external magnetic field. When the size of the sphere is small compared with the
wavelength, the known T matrix for a magneto-active Rayleigh scatterer is found. We address the issue of
whether there is a so-called photonic Hall effect—a magneto-transverse anisotropy in light scattering—for one
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1. INTRODUCTION
There are several reasons why one wishes to understand
light scattering from a dielectric sphere made of magneto-
active material. Single scattering is the building block
for multiple scattering. Many experiments have been
done with diffuse light in a magnetic field.1–3 Though
qualitatively very useful, a theory for pointlike scatterers
in a magnetic field, as first developed by MacKintosh and
John4 and later refined by van Tiggelen et al.,5 does not
always describe observations quantitatively, for the obvi-
ous reason that experiments do not contain small scatter-
ers. In this paper light scattering from one sphere of any
size in a homogeneous magnetic field is addressed.

The model of Rayleigh scatterers has been used suc-
cessfully to describe specific properties of multiple light
scattering in magnetic fields, such as coherent back-
scattering and the photonic Hall effect (PHE). In Section
2 we present the perturbation approach on which our
work is based, which allows us in Section 3 to compute
the T matrix for this problem. With this tool we are able
to answer in Section 4 the issue concerning the PHE.

2. PERTURBATION THEORY
We consider the light scattered by one dielectric sphere
made of a Faraday-active medium embedded in an isotro-
pic medium with no magneto-optical properties, using a
perturbative approach to first order in the magnetic field.

In this paper we set c0 5 1. In a magnetic field the re-
fractive index of the sphere is a tensor of rank 2. This
index depends on the distance to the center of the sphere
r, which is given a radius a by means of the Heaviside
function U(r 2 a), which equals 1 inside the sphere and
0 outside:

«~B, r! 2 I 5 @~«0 2 1 !I 1 «FF#U~ uru 2 a !. (1)
0740-3232/98/061636-07$15.00 ©
In this expression «0 5 m2 is the value of the normal
isotropic dielectric constant of the sphere of relative index
of refraction m (which can be complex), and «F
5 2mV0 /v is a coupling parameter associated with the
amplitude of the Faraday rotation (V0 being the Verdet
constant and v the frequency). We introduce the anti-
symmetric Hermitian tensor F ij 5 ie ijkBk . Except for
«F , the Mie solution depends on the dimensionless size
parameters x 5 ka with k 5 v/c0 and y 5 mx. In this
paper we restrict our investigation to nonabsorbing me-
dia, so that m and «F are real valued.

Noting that the Helmholtz equation is formally analo-
gous to a Schrödinger equation with potential V(r, v)
5 @I 2 «(B, r)#v2 and energy v2, we obtain the T ma-
trix with the following Born series6:

T~B, r, v! 5 V~r, v! 1 V~r, v! • G0 • V~r, v! 1 . . . .
(2)

Here G0(v, p) 5 1/(v2I 2 p2Dp) is the free Helmholtz
Green’s function, and (Dp) ij 5 d ij 2 pi pj /p2. We call T0

the part of T that is independent of the magnetic field and
T1 the part of the T matrix that is linear in B. It follows
from Eq. (2) that

T1 5 ~1 2 «0!«FUT0
• F • ~I 1 G0 • T0!. (3)

We need to introduce the unperturbed eigenfunctions
Cs,k

6 (r) of the conventional Mie problem. These eigen-
functions represent the electric field at the point r for an
incident plane wave us, k& along the direction k with an
helicity s. This eigenfunction is ‘‘outgoing’’ for Cs,k

1 and
‘‘ingoing’’ for Cs,k

2 , according to the definition of the out-
going and the ingoing free Helmholtz Green’s function:

uCs,k
6 & 5 ~I 1 G0

6
• T0!us,k&.

For our free Helmholtz Green’s function this implies6
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Cs,2k
2* ~r! 5 ~21 !11sC2s,k

1 ~r!. (4)

We denote by k the incident direction and by k8 the
scattered direction. With this notation it is possible to
obtain from Eq. (3)

Tks,k8s8
1

5 «Fv2^Cs,k
2 uUFuCs8,k8

1 &. (5)

This equation can also be obtained from standard first-
order Rayleigh–Schrödinger perturbation theory.7

Two important symmetry relations are satisfied by our
T matrix. The first one is the parity, and the second one
is the reciprocity:

T2k2s,2k82s8~B! 5 Tks,k8s8~B!, (6)

T2k8s8,2ks~2B! 5 Tks,k8s8~B!. (7)

3. T MATRIX FOR MIE SCATTERING
To separate the radial and the angular contributions in
Eq. (5), we expand the Mie eigenfunction Cs,k

1 on the ba-
sis of the vector spherical harmonics6:

Cs,k
1 ~r! 5

2p

r
iJ11YJM

l8 ~ r̂!f l8l
J

~r !YJM
l* ~k̂! • xs8 . (8)

In this definition r 5 kmr, the xs8 are the eigenvectors of
the spin operator in the circular basis associated with the
direction k, and implicit summation over the repeated in-
dices J, M, l, and l8 has been assumed (the indices l and
l8 for the components of the field can take three values,
one being longitudinal and two being perpendicular to the
direction of propagation).

Because of the presence of the function U in Eq. (5), we
have to consider only the field inside the sphere, whose
main features are contained in the radial function
f l8l

J (r). This matrix f l8l
J is known in terms of the trans-

mission coefficients cJ and dJ of Ref. 8, and of the Ricatti–
Bessel function uJ(r). We found the following expres-
sion:

f J~r! 5 mF 2iuJ8 ~r!cJ 0 0

2iuJ8 ~r!cJ@J~J 1 1 !#1/2/r 0 0

0 0 uJ~r!dJ

G .

The three vectors xs , which are similar to the xs8 but
associated with the z axis, are a convenient basis for this
problem since they are the eigenvectors of the operator F
with eigenvalue 2s, provided that we choose the z axis
along B, which we do below. Equation (5) is simplified by
this choice, and the angular integration leads eventually
to

E YJ1M1

l1* ~ r̂! • F • YJ2M2

l2 ~ r̂!dVr

5 dJ1J2
dM1M2

Ql1l2
~J1 , M1!,

where Q is the matrix
Q~J, M ! 5 2MB3
1

J~J 1 1 !

1

AJ~J 1 1 !
0

1

AJ~J 1 1 !
0 0

0 0
1

J~J 1 1 !

4
(9)

and B is the absolute value of the applied magnetic field.
The linear dependence on the magnetic quantum number
M can be expected for an effect like the Faraday rotation,
affecting left and right circularly polarized light in an op-
posite way, similar to Zeeman splitting. The radial inte-
gration can be performed with a method developed by
Bott et al.9:

Tk,k8
1

5
16p

v
W(

J,M
~2M !@C JY J,M

e ~k̂!Y J,M
e* ~k̂8!

1 DJY J,M
m ~k̂!Y J,M

m* ~k̂8!#, (10)

with the dimensionless parameter

W 5 V0Bl

and the coefficients

C J 5 2
2cJ

2* uuJu2y3

J~J 1 1 !~y2 2 y* 2!
S AJ*

y*
2

AJ

y
D , (11)

DJ 5 2
2dJ

2* uuJu2y3

J~J 1 1 !~y2 2 y* 2!
S AJ*

y
2

AJ

y*
D , (12)

with AJ( y) 5 uJ8 ( y)/uJ( y) and B the amplitude of the
magnetic field directed along the unit vector B̂. Absorp-
tion in the sphere is still allowed. We consider the lim-
iting case of a perfect dielectric sphere with no absorption
@Im(m)→ 0#. Using l’Hospital’s rule in Eqs. (11) and
(12), we immediately obtain for this case

C J 5
2cJ

2* uJ
2y

J~J 1 1 !
FAJ

y
2

J~J 1 1 !

y2
1 1 1 AJ

2G , (13)

DJ 5
2dJ

2* uJ
2y

J~J 1 1 !
F2

AJ

y
2

J~J 1 1 !

y2 1 1 1 AJ
2 G .

(14)

A. T Matrix without Magnetic Field
For future use we need the on-shell T matrix of the con-
ventional Mie problem.8 It is given by a formula analo-
gous to Eq. (10), where C J and DJ are replaced by the Mie
coefficients aJ and bJ and by M 5 1. Because of rota-
tional invariance of the scatterer, it is clear that the final
result depends only on the scattering angle u, which is the
angle between k and k8 (see Fig. 1). Therefore we obtain
in the circular basis (associated with the indices s and s8)

Tss8
0

5
2p

iv (
J>1

2J 1 1

J~J 1 1 !
~aJ* 1 ss8bJ* !

3 @pJ,1~cos u! 1 ss8tJ,1~cos u!#. (15)
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In this formula the polynomials pJ,M and tJ,M are defined
in terms of the Legendre polynomials PJ

M by8

pJ,M~cos u! 5
M

sin u
PJ

M~cos u!,

tJ,M~cos u! 5
d

du
PJ

M~cos u!. (16)

B. Tkk8
1 When k̂ Þ k̂8

We have yet to express the vector spherical harmonics in
Eq. (10) in terms of the natural angles of the problem in
the presence of a magnetic field. The magnetic field
breaks rotational invariance. Because T1 is linear in B̂,
we can construct it by considering three special cases for
the direction of B̂. If k̂ Þ k̂8, we can decompose the unit
vector B̂ in the nonorthogonal but complete basis of k̂, k̂8
and ĝ 5 k̂ 3 k̂8/uk̂ 3 k̂8u, and this results in

Tkk8
1

5
~B̂ • k̂!~k̂ • k̂8! 2 B̂ • k̂8

~k̂ • k̂8!2 2 1
TB̂5k̂8

1

1
~B̂ • k̂8!~k̂ • k̂8! 2 B̂ • k̂

~k̂ • k̂8!2 2 1
TB̂5k̂

1
1 ~B̂ • ĝ!TB̂5ĝ

1 ,

(17)

with

Tss8
1

~B̂ 5 k̂! 5
2W

v (
J>1

2J 1 1

J~J 1 1 !
~2s!~C J 1 ss8DJ!

3 @pJ,1~cos u! 1 ss8tJ,1~cos u!#, (18)

Tss8
1

~B̂ 5 k̂8! 5
2W

v (
J>1

2J 1 1

J~J 1 1 !
~2s8!~C J 1 ss8DJ!

3 @pJ,1~cos u! 1 ss8tJ,1~cos u!#, (19)

Fig. 1. Schematic view of the magneto-scattering geometry.
Generally, u denotes the angle between incident and outgoing
wave vectors; f is the azymuthal angle in the plane of the mag-
netic field and the y axis. The latter is by construction the
magneto-transverse direction defined as the direction perpen-
dicular to both the magnetic field and the incident wave vector.
Angle a coincides with angle u in the special but relevant case
that the incident vector is normal to the magnetic field.
Tss8
1

~B̂ 5 ĝ! 5
4iW

v (
J>1

J>M.0

2J 1 1

J~J 1 1 !
M sin~Mu!

3
~J 2 M !!

~J 1 M !!
~ss8C J 1 DJ!

3 @p J,M
2 ~0 ! 1 ss8t J,M

2 ~0 !#. (20)

C. Particular Case for T1 for Forward Scattering
The treatment in Subsection 3.B becomes degenerate
when k̂ and k̂8 are parallel, i.e., in forward scattering. In
this case B̂ can still be expressed in a basis made of k̂ and
of two vectors perpendicular to k̂. The contribution of
these last two vectors must have the same form as in Eq.
(20) for u 5 0. Hence there is no such contribution, and
we find

Tks,ks8
1

5 dss8~B̂ • k̂!~2s!
2W

v
(
J>1

~2J 1 1 !~C J 1 DJ!.

(21)

In Fig. 2 we have plotted the real and the imaginary parts
of this expression in units of W as a function of the size
parameter x for s 5 21 and B̂ 5 k̂. The forward-
scattering amplitude has an important application in in-
homogeneous media, namely, as the complex average di-
electric constant.

D. Optical Theorem
We check our formula on energy conservation as ex-
pressed by the Optical Theorem6:

2
Im~Tks,ks!

v
5 (

s8
E dVk8

uTks,k8s8u
2

~4p!2 . (22)

To first order in the magnetic field, the right-hand side of
this equation equals

Fig. 2. Real part (solid curve) and imaginary part (dashed
curve) of the magneto-forward scattering matrix Tkk

1 in the cir-
cular basis of polarization, plotted versus size parameter x for in-
dex of refraction m 5 1.33 in units of W 5 V0Bl.
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1

8p 2 (
s8

E dVk8 Re~Tks,k8s8
0 Tks,k8s8

1* !.

If we assume that B̂ik̂, we can compute this using Eqs.
(18) and (15) and the following orthogonality relations for
the polynomials pJ,1 and tJ,1 (which we denote pJ and
tJ)6:

E d~cos u!@pJ~cos u!tK~cos u! 1 tJ~cos u!pK~cos u!#

5 0,

E d~cos u!@pJ~cos u!pK~cos u! 1 tJ~cos u!tK~cos u!#

5
2J2~J 1 1 !2

2J 1 1
dJK . (23)

The left-hand side of Eq. (22) is obtained from Eq. (21).
The Optical Theorem gives us a relation between Mie co-
efficients, which we can actually prove from their defini-
tions:

Re@aJ* cJ
2~2/i !# 5 Im~cJ

2 !, (24)

Re@bJ* dJ
2~2/i !# 5 Im~dJ

2 !. (25)

4. MAGNETO-TRANSVERSE SCATTERING
From our knowledge of the matrix T1 we can compute
how the magnetic field affects the differential scattering
cross section summed over polarizations as a function of
the scattering angle. Only the diagonal part of this ma-
trix in a basis of linear polarization will affect the scatter-
ing cross section, since we consider only terms to first or-
der in the magnetic field. Therefore only the third
contribution of Eq. (17) plays a role, which means that the
effect will be maximum when B̂ik̂ 3 k̂8 (the typical Hall
geometry). Indeed, symmetry implies that the magneto-
scattering cross section should be the product of
det(B̂, k̂, k̂8) and of some function that depends entirely
on the scattering angle u.

We choose to normalize this magneto-scattering cross
section by the total scattering cross section in the absence
of the magnetic field:

2(
ss8

Re~Tss8
0 , Tss8

1* !

E
0

2p

dfE
0

p

d cos u(
ss8

uTss8
0 u2

5 2sin fF~u!. (26)

The so-called PHE is a manifestation of a magnetically
induced transverse current in the light transport that has
similarities to the Hall effect, which is known for the
transport of electrons. In an experiment on the PHE,
one measures the difference in scattered light from two
opposite directions: perpendicular both to the incident
direction of light and to the applied magnetic field.2 The
PHE is a manifestation of the anisotropy of light scatter-
ing that is due to a magnetic field in the regime of mul-
tiple light scattering.
Fig. 3. Magneto-transverse scattering cross section F(u) for a
Rayleigh scatterer with index of refraction m 5 1.1 and size pa-
rameter x 5 0.1. Solid curve, positive correction; points, nega-
tive correction. The curve has been normalized by the param-
eter W. No net magneto-transverse scattering is expected in
this case because the projections onto the y axis of these correc-
tions cancel one another. Axis numbers in the format 4e-06 are
equivalent to 4 3 1026.

Fig. 4. Magneto-transverse scattering cross section F(u) for a
Mie scatterer of size parameter x 5 5 and of index of refraction
m 5 1.1. The curve has been normalized by the parameter W.
Solid curve, positive correction; points, negative correction. In
this case a net magneto-transverse scattering is expected be-
cause the projections onto the y axis of these corrections do not
cancel one another.
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Although experiments have dealt with multiple scat-
tering so far, it is interesting to see whether a net
magneto-transverse scattering persists for only one single
scatterer. In Figs. 3 and 4 the magnetic field is perpen-
dicular to the plane of the figure, and the incident light is
along the x axis. A typical measurement of the magneto-
transverse scattered light is therefore associated with the
projection of the curve onto the y axis, which we define as
the magneto-transverse direction.

5. MAGNETO-TRANSVERSE SCATTERING
AS A FUNCTION OF THE SIZE
PARAMETER
Quantitatively, the transverse-light-current difference is
associated with a summation of the magneto-scattering
cross section over outgoing wave vectors and normalized
to the total transverse light current. A schematic view of
the geometry is displayed in Fig. 1. In our notation this
is

h [
Iup~B ! 2 Idown~B !

Iup~B 5 0 ! 1 Idown~B 5 0 !

5

2E
0

p

dfE
0

p

d cos u sin u sin f(
ss8

Re~Tss8
0 Tss8

1* !

E
0

p

dfE
0

p

d cos u sin u sin f(
ss8

uTss8
0 u2

.

(27)

The factor sin u sin f represents a projection onto the
magneto-transverse direction B̂ 3 k̂, which is necessary
since we are interested in the magneto-transverse light
flux. In Fig. 5 we plotted this contribution as a function
of the size parameter x for an index of refraction m
5 1.0946 (the value in Ref. 2). Note the change of sign
beyond x 5 1.7, for which we do not yet have any simple
explanation. In the range of the small size parameter, h
exhibits an x5 dependence.

A. Rayleigh Scatterers
For Rayleigh scatterers formulas (17)–(21) simplify dra-
matically because one needs to consider only the first par-
tial wave of J 5 1 and the first terms in a development in
powers of y (since y ! 1). From Eqs. (13) and (14) we
find C 1 5 22y3/m2(2 1 m2)2 and D1 5 2y5/45m4, so
we can keep only C 1 and drop D1 as a first approxima-
tion. Adding all contributions of Eqs. (17) and (15) and
changing from a circular basis to a linear basis of polar-
ization, we find

Tk,k8 5 F t0k̂ • k̂8 1 it1B̂ • ~k̂ 3 k̂8! it1B̂ • k̂

2it1B̂ • k̂8 t0
G ,

(28)

where t0 5 26ipa1* /v is the conventional Rayleigh T
matrix and t1 5 6C 1W/v. This form agrees with the
Rayleigh pointlike-scatterer model discussed in Ref. 5.
We note that Eqs. (18) and (19) give off-diagonal contri-
butions in Eq. (28), whereas Eq. (20) gives a diagonal con-
tribution. This is a general feature that also persists be-
yond the regime of Rayleigh scatterers.
For a Rayleigh scatterer the magneto cross section of
Fig. 3 exhibits symmetry, since the positive and negative
lobes of the curve are of the same size but of opposite sign.
Hence no net magneto-transverse scattering exists for one
Rayleigh scatterer. In fact, Eq. (28) provides the follow-
ing expression for F(u):

FRayleigh~u! 5
3mx3

4p2~m2 1 2 !2
cos u sin u. (29)

As the size of the sphere enlarges, the magneto correc-
tions become asymmetric, as seen in Fig. 4. When the
size is further increased, new lobes start to appear in the
magneto cross section, corresponding to higher spherical
harmonics. These lobes do seem to have a net magneto-
transverse scattering.

One single Rayleigh scatterer does not induce a net
magneto-transverse flux. It is instructive to consider the
next simplest case, namely, two Rayleigh scatterers posi-
tioned at r1 and r2 . If their mutual separation well ex-
ceeds the wavelength, it is easy to show that the collective
cross section simply equals the one-particle cross section
multiplied by an interference factor S(k, k8) 5 uexp@i(k
2 k8) • r1] 1 exp@i(k 2 k8) • r2#u2. This interference
factor changes the angular profile of the scattering cross
section and ensures that a net magneto-transverse flux
remains. The estimate for two Rayleigh particles with
an incident wave vector along the interparticle axis is
found to be

h ;
V0B

k
x3S sin~kr12!

kr12
D 2

, if kr12 @ 1. (30)

This simple model suggests that the PHE is in fact a phe-
nomenon generated by interference of different light
paths. In Fig. 6 we show how differential cross sections
of two particles change in a magnetic field. More scatter-

Fig. 5. Normalized magneto-transverse light current h as a
function of size parameter x for an index of refraction m
5 1.0946. The curve is displayed in units of W.
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ing is now directed into the forward direction, and as a re-
sult the cancellation of the net magneto-transverse flux in
Fig. 3 is removed. One Mie sphere qualitatively mimics
this simple model and should, on the basis of the principle
outlined above, exhibit a magneto-transverse current.
The model also suggests that the regime of Rayleigh–
Gans scattering8—the Born approximation for one sphere
that, while contrary to Rayleigh scattering, still allows in-
terferences of different scattering events—should exhibit
a net magneto-transverse flux. Indeed, explicit calcula-
tions in this regime confirm this statement, with
h ; x5, independent of the index of refraction m of the
sphere.

B. Geometrical Optics
In the regime of large size parameters, the Mie solution
can be obtained from ray optics. Apart from Fraunhofer
diffraction (which persists for any finite geometry), the
Mie solution for a ray with central impact should be
equivalent to the solution for a slab geometry. In our
magneto-optic approach this means studying the Faraday
rotation in a Fabry–Perot cavity. This model is of special
interest because the Fabry–Perot cavity is known to en-
hance the Faraday rotation10,11; i.e., the rotation is addi-
tive in the total traversed path length, in contrast to the
case of rotary power.

A ray with central impact is characterized by J 5 1 in
Mie theory. We assume that x @ 1 and y @ 1, which al-
lows some simplification in the expression of the Mie co-
efficients. We find for the Mie coefficients c1 and d1 the
following behavior:

Fig. 6. Magneto-cross section for two Rayleigh scatterers each
of size parameter ka 5 0.1 and separated by a distance corre-
sponding to size parameter kr12 5 5. In this case the enhanced
forward scattering leads also to a net magneto-transverse cur-
rent along the vertical axis. Axis numbers in the format 4e-06
are equivalent to 4 3 1026.
c1 5
2 exp@i~x 2 y !#

~m 1 1 !@1 1 r exp~22iy !#
,

d1 5
2 exp@i~x 2 y !#

~m 1 1 !@1 2 r exp~22iy !#
. (31)

In this formula r 5 (m 2 1)/(m 1 1) is the complex
Fresnel reflection coefficient. Putting this expression
into Eqs. (13), (14), and (21), we can compute the exact be-
havior of the T matrix in the forward direction. We note
with Tscatt

0 the part of T0 that is due to scattering only,
which is obtained from Eq. (15) by replacing the Mie co-
efficients aJ and bJ with aJ 2 1/2 and bJ 2 1/2, since the
terms 1/2 are associated with the Fraunhoffer diffraction,
which does not exist for the slab geometry.

Since for a small perturbation we have

T 5 Tscatt
0 1 T1 . Tscatt

0 exp~T1/Tscatt
0 !, (32)

we see that the change in phase df that is due to the mag-
netic field is in fact related to the imaginary part of
T1/Tscatt

0 . This change in phase can be interpreted as the
Faraday effect.

From Eq. (31) we find in the basis of circular polariza-
tion

ImS T1

Tscatt
0 D

ss8

5 df~2s!B̂ • k̂dss8 , (33)

with

df 5 2aV0B
1 1 R

1 2 R

1

@1 1 M sin~2y !2#
, (34)

with M 5 4R/(1 2 R)2 and reflectivity R 5 r2. We
note that the quantity (2s)B̂ • k̂ is conserved for a given
ray, which generates the accumulation of the Faraday ro-
tation. The function df tends to 2aV0B as R → 0, since
it represents the normal Faraday rotation in an isotropic
medium of length 2a, as it should be for our geometry.
When R is large, two new factors come into play: (1
1 R)/(1 2 R), the maximum gain factor of the Faraday
rotation, which is due the multiple interference in the
Fabry–Perot cavity, and

A~ y ! 5
1

1 1 M sin~2y !2 ,

which is an Airy function of width 4/AM. The finesse of
the cavity is then F 5 pAM/2. At resonance, the Fara-
day rotation is maximally amplified—if we assume no
losses—relative to single-path Faraday rotation.10,11 We
stress that one needs df ! 1, for Eq. (32) to apply. The
Faraday rotation has the effect of splitting each transmis-
sion peak in the Fabry–Perot cavity into two peaks of
smaller amplitude, with each of the split peaks associated
with a different state of helicity.

The amplification of the Faraday rotation is a conse-
quence of the amplified path length of the light. In other
words, the Faraday rotation measures the time of inter-
action of the light with the magnetic field.12 This time is
found to be the dwell time t of the light in the cavity for
this one-dimensional problem. The change in phase fol-
lows the simple relation
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df 5 V0B~t c0 /m !, (35)

where c0 /m is recognized as the speed of light in the
sphere.

The dwell time of the light in the cavity varies between
a maximum value of

t dwell
max 5 ~1 1 m2!a/c0

and a minimum value of

t dwell
min 5 4m2/~1 1 m2!a/c0 .

These typical oscillations are visible in the plot of the
change of phase d f of Fig. 7.

6. SUMMARY AND OUTLOOK
In this paper we have addressed the Faraday effect inside
a dielectric sphere. We have shown that this theory is
consistent with former results concerning the predictions
of the light scattered by Rayleigh scatterers in a magnetic

Fig. 7. Magnetically induced change of phase d f—similar to
Fabry–Perot modes of a cavity—as a function of size parameter x
for the partial wave of J 5 1, the one with central impact. The
curve is for m 5 10 and has been normalized by the value
2aV0B.
field. It is possible to get from this perturbative theory
quantitative predictions concerning the Photonic Hall Ef-
fect for one single Mie sphere, such as the scattering cross
section and the dependence on the size parameter or on
the index of refraction.

We will begin experiments that address single Mie
scattering in a magnetic field. A second challenge is to
incorporate our Mie solution into a multiple-scattering
theory.
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