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SI Materials and Methods
Lipids and Reagents.Chemicals were purchased from Sigma-Aldrich
unless specified otherwise. Egg L-α-phosphatidic acid (EPA), egg
L-α-phosphatidylcholine (EPC), and 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[biotinyl(polyethylene-glycol)-2000]
[DSPE-PEG(2000)-biotin] were obtained from Avanti Polar
Lipids. QD655–streptavidin conjugate were provided from Life
Technologies. EZ-Link maleimide-PEG11-biotin was purchased
from Pierce. Detergents, n-decyl-maltopyranoside (DM) and
n-octyl-β-D-glucopyranoside (OG), were bought from Affymetrix.

Protein Purification and Reconstitution in Giant Unilamellar Vesicles.
KvAP, an archeabacterial voltage-gated potassium channel (tet-
ramer, 112 kDa), was overexpressed in Escherichia coli and puri-
fied as described in ref. 1 and reference therein. Bacteria were
solubilized in DM, and then KvAP was purified using a poly-
histidine-tag affinity column (HiTrap Ni-Sepharose; GE Health-
care) followed by a size exclusion chromatography (Superdex200
10/300 GL; GE Healthcare). Native aquaporin 0 (AQP0) (tetra-
mer, 112 kDa) was purified from sheep crystalline cortical lenses
as reported in ref. 2. Cortical lens lipid membranes were isolated
and then solubilized with OG. AQP0 were purified using an ion
exchange column (Mono-S 5/50 GL; GE Healthcare) followed
by a size exclusion chromatography (Superose12 10/300 GL; GE
Healthcare). KvAP and AQP0 tetramers in detergent were then
labeled with maleimide-PEG11-biotin. Protein purity and integrity
were checked by SDS/polyacrylamide gel electrophoresis. Protein
concentrations were determined by protein adsorbance at 280 nm
(NanoDrop Spectrophotometer; Thermo Scientific). Labeled
proteins were then mixed with small unilamellar vesicles (SUVs) of
EPC and EPA (9:1 molar ratio) presolubilized with detergent (i.e.,
10 mM DM for KvAP and 31 mM OG for AQP0) (3). The free
labeling molecules and detergent were removed by dialysis. The
final SUV concentration was ∼10 mg/mL in a relatively low-salt
buffer (5 mM KCl, 1 mM Hepes, pH 7.4) with a protein-to-lipid
mass ratio of 1:10. Suspensions of SUV-containing proteins were
flash-frozen in liquid nitrogen and kept until use at −80 °C.
KvAP or AQP0 reconstitution in giant unilamellar vesicles

(GUVs) was performed using the electroformation protocol on
platinum wires as described in ref. 4. SUVs containing proteins
were mixed with pure EPC/EPA SUVs to achieve a final protein-
to-lipid mass ratio of 1:200, corresponding to ∼40 proteins per
μm2. Droplets of the SUV solution were deposited onto two
parallel platinum wires and partially dehydrated at room pres-
sure and humidity for 1 h. Lipid–protein films were then rehy-
drated in a solution containing 5 mM KCl, 5 mM Hepes, and
385 mM sucrose at pH 7.4, while keeping the platinum wires
(diameter, 0.5 mm; edge-to-edge distance, 2 mm; Goodfellows)
under sinusoidal voltage of 1 V (peak-to-peak) at 10 Hz for 2 h
maximum. The lipid-only GUVs were prepared using a lipid
mixture in chloroform containing EPC/EPA in a 9:1 molar ratio,
complemented with 0.01% of DSPE-PEG(2000)-biotin. It was
deposited onto platinum wires and hydrated under an AC field
as previously described.
Before the single-particle tracking (SPT) experiments, the

GUV suspension was diluted with a buffer solution of matching
osmolarity containing 10 mM Hepes, 5 mM KCl, 95 mM NaCl,
∼175 mM glucose, and 25 mg/L β-casein at pH 7.4. A small
amount (∼10 pmol) of QD655–streptavidin conjugate was add-
ed. After 1- to 2-min incubation, the GUVs were washed with
the same buffer solution four times for 90 s at 1,000 × g in a

minicentrifuge. GUVs obtained with this protocol were spherical
and presented no observable defects in the membrane (5).

Micromanipulation and Quantum Dot Imaging on GUV.Quantum dot
(QD)-labeled GUVs were transferred to the microscopy obser-
vation chamber passivated with β-casein solution (1 g/L for 30
min). They were aspirated in a glass micropipette hold by a mi-
cromanipulator (Narishige) and a custom-made hydraulic system.
The membrane tension Σ was determined using Σ= ðΔP  RpipÞ=
ð2ð1−Rpip=RvesÞÞ, where Rpip is the inner pipette radius, Rves is the
vesicle radius, and ΔP is the difference of hydrostatic pressure
caused by the vertical displacement of the water reservoir con-
nected to the pipette (6). For each vesicle, membrane was pre-
stressed at Σ≈ 10−3 N=m during 2 min and Σ was decreased to
the lowest value before diffusion measurement.
Micromanipulated GUV was positioned so that the bottom pole

could sit within the depth of field of the optical microscope. The
high-speed imaging of single QDs attached to tracer molecules
(lipid or protein) was made using an epifluorescence microscope
(Eclipse Ti; Nikon France SAS) equipped with a high-pressure Hg
lamp as a light source, a Nikon Plan Fluor 100 oil-immersion
objective (N.A. = 1.3), and a back-thinned electron-multiplying
CCD camera (iXon DU-897; Andor Technology). The fluores-
cence filter set QD655 (BP435/40, dichroic 510 nm, BP655/15)
was obtained from Semrock. The membrane tension was then in-
creased step by step, and for each membrane tension, two se-
quences of 30,000 images were recorded with 2-ms exposure time
and electron multiplication gain of 200. In a typical sequence, 100–
1,000 individual QDs explore a membrane surface of 3- to 5-μm
width in the focal plane.
We have estimated the viscous drag experienced by the QD as it

moves through the aqueous solvent .With aQD655 radius ofRQD=
10 nm, we estimated the 3D diffusion coefficient of the QD using
Stokes–Einstein equation, D= ðkBTÞ=ð6πηRQDÞ≈ 21 μm2=s. This
value is six times larger than the lipid or protein diffusion co-
efficients reported in our works. This means that the effective
viscous drag experienced by QD bound to a membrane component
is dominated by the drag contribution associated to the lipid or
protein moving through the membrane, in agreement with ref. 7.

SPT and Analysis.We use SPT, which has emerged as an alternative
to fluorescence recovery after photobleaching, capable of charac-
terizing the dynamics of single lipids and proteins at both short time
and length scales. This overcomes population averaging effects and
provides a level of resolution allowing for new mechanisms to be
unraveled at the molecular scale in biological membranes.
Detection and tracking of individual QD was performed with

MATLAB routines (SPTrack version 4), on the whole image
sequences as illustrated in the Inset of Fig. 1B. Single QDs were
identified by their blinking. Fluorescent peaks in each frame of
the image sequence were found by fitting local maxima with a 2D
Gaussian function corresponding to the point spread function of
the experimental setup. Using this procedure, the peak intensity
and the centroid position in the two lateral dimensions were
determined with a spatial resolution of 10 nm. Weak or asym-
metric peaks were discarded by applying appropriate thresholds.
Trajectories were built by connecting the fluorescence peaks that
could be unequivocally assigned to individual QD using a modi-
fied routine of the multiple-target tracing (MTT) software de-
veloped by Sergé et al. (8) based on Bayesian inference methods.
To avoid geometrical artifacts related to the projection of these

3D trajectories on the focal plane (tracers diffusing in membrane
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with curvature of the order of 0.05–0.15 μm−1), we limited our
analysis to a small membrane area around the GUV bottom
pole. The size of this square region of interest (ROI) was ad-
justed depending on the vesicle radius, such that the relative
difference between the projected area and the apparent mem-
brane cap surface remains lower than 0.5%. Only trajectories
that were at least 30 points long in ROI were kept for further
analysis (Fig. 1B). For each vesicle at a given membrane tension,
we obtained between 50 and 1,000 trajectories in ROI. To de-
termine diffusion coefficients, we calculated the mean-square
displacement (MSD) from the QD displacements:

�
Δr2ðn · δtÞ�= 1

N − n

XN−n

i=1

h
ðxi+ n − xiÞ2 + ð yi+ n − yiÞ2

i
; [S1]

where xi and yi are the coordinates of the QD in frame i, N is the
total number of points in the trajectory, δt is the time interval
between two consecutive frames, and t= n · δt is the time interval
over which displacement is averaged. The diffusion coefficient D
was calculated for individual trajectory by fitting the points 2–5
(point 1 being the origin) of the MSD plot versus time (9) with
the following equation:

�
Δr2ðtÞ�= 4Dt+ b; [S2]

where b is a variable offset reflecting the spot localization accu-
racy. To ensure that there was no bias in our tracking analysis, we
systematically checked the step length, MSD curves, and mobility
histograms for all experiments. The histograms did not show im-
mobile particles, and the averaged MSD curves were predomi-
nantly linear, implying Brownian diffusion in all our samples
(Fig. S1). In summary, despite the relatively wide distribution
of diffusion coefficients obtained by SPT, the median values
revealed a clear trend as a function of membrane tension with
the overall reduction of the lipid mobility significantly exceeding
the experimental uncertainties. Eventually, we plotted the me-
dian value and the SE of the diffusion coefficient, as shown in
Fig. 2 and Fig. S2.

Role of the Size of the Observation Window in the Analysis of the
MSD. The diffusion coefficient of the tracer is extracted from
the analysis of the MSD. This diffusion coefficient is typically
obtained from the short time behavior of the MSD. Although the
MSD appears linear with respect to time at short time, a satu-
ration at larger time is typically observed. In the present exper-
iment, the diffusing protein should experience free diffusion in
the fluid membrane; therefore, there should be no confinement
effect due to the diffusing medium itself. As a result, we interpret
this saturation as the consequence of a truncation of the tra-
jectories compatible with the given observation window. This
section provides a theoretical understanding of this effect.
Let us consider that the protein diffuses freely in 2D on a

rectangle of dimensions Lx along the x axis and Ly along the y
axis. Because diffusion along these two directions is indepen-
dent, we can relate this problem to the simpler problem of dif-
fusion of a particle in 1D in a finite interval 0< x< L.
The conditional probability to be at position x at time t given

that the particle left the position x0 at time 0, namely Pðx; tjx0Þ,
obeys the diffusion equation:

∂P
∂t

=D
∂2P
∂x2

: [S3]

When the particle leaves the interval ½0;L�, we stop observing it,
which means that we have absorbing boundary conditions:

Pðx= 0; tj x0Þ=Pðx=L; tj x0Þ= 0: [S4]

Furthermore, we have the following initial condition:

Pðx; t= 0j x0Þ= δðx− x0Þ: [S5]

The solution of this problem can be found in the textbook of Doi
and Edwards (10) on polymer dynamics, the solution is as fol-
lows:

Pðx; tj x0Þ= 2
L

X
n≥0

sin
�nπx

L

�
sin
�nπx0

L

�
exp
�
−
n2π2tD
L2

�
: [S6]

The initial position of the tracer is assumed to be uniformly dis-
tributed in the interval so that Pðx0Þ= 1=L if 0< x0 < L and zero
otherwise. From this, we obtain the probability of the tracer to be
at position x at time t as follows:

Pðx; tÞ=
ZL
0

dx0Pðx; tj x0ÞPðx0Þ: [S7]

Furthermore, the survival probability, namely, the probability for
the tracer to be still in the interval at time t is as follows:

PsurvðtÞ=
ZL
0

dxPðx; tÞ: [S8]

The MSD conditional on staying in the interval, hΔx2icond, is then
the following:

�
Δ x2

�
cond =

1
PsurvðtÞ

ZL
0

dx
ZL
0

dx0ðx− x0Þ2 Pðx; tj x0ÞPðx0Þ: [S9]

After a bit of calculation, one finds the following:

�
Δ x2

�
condðt;LÞ=

1
PsurvðtÞ

4L2

π4

×
X∞
n=1

−4
�
1− ð−1Þn	− ð−1Þnn2π2

n4
exp

 
−Dπ2n2t

L2

!
:

[S10]

From this, one obtains the following asymptotic behavior for
t→∞:

�
Δ x2

�
cond →L2π

2 − 8
2π2

’ 0:0947L2: [S11]

For the original problem of diffusion in a 2D rectangular box of
dimensions Lx and Ly and a disk of radius R, one obtains the
following:�

Δr2
�
condðtÞ=

�
Δ x2

�
condðt;LxÞ+

�
Δ x2

�
cond

�
t;Ly

	
; [S12]

which tends asymptotically toward 0:0947ðL2
x +L2

y Þ, for t→∞.
It follows from this that one observes a crossover between a linear

behavior of the MSD at short times to a constant at long times
as illustrated in Fig. S3. The position of this crossover is insensitive
to the details of the boundary conditions considered here. In all
experiments, we have carefully checked that we were far from the
crossover regime when measuring the effective mobility.
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Computational Methods. The computational methods follow closely
the algorithms developed in ref. 11. The membrane configuration is
represented in the Monge gauge as a height function decomposed
into Fourier modes above the 2D xy plane. The protein is repre-
sented as a location projected to the xy plane. The membrane and
protein are coupled mechanically according to the Hamiltonian
and hydrodynamic coupling tensor discuss in the main text. The
membrane–protein system were thermalized by introducing sto-
chastic driving fields for both the proteins and membrane. The
stochastic dynamics were integrated in time using the Euler–
Maruyama method (12). A key feature of the membrane–protein
coupling is the use of a coupling kernel functionG to avoid explicit
boundary conditions. The role of G is to model at a coarse-grained
level the range of influence of the protein upon the membrane and
this term acts to spread protein forces over a spatial patch of the
bilayer. This allows for computational efficiency in treating how
a protein locally augments the preferred curvature of the lipid bi-
layer membrane and also the back force that the membrane exerts
on the protein. We use the Peskin δ-function for our coupling
kernel along with “phase factor averaging” as illustrated in Fig. S4
and discussed in detail in ref. 11. The membrane profiles compared
with theory were extracted from our computational model by al-
lowing for the membrane mechanics to relax to equilibrium for
a fixed protein and taking a cross-section through the protein lo-
cation. To obtain statistics, we used a straightforward Monte Carlo
approach where independent trajectories were realized for the
protein diffusion subjected to the membrane thermal fluctuations.
The membrane diffusivity was estimated by fitting the slope of
hΔr2ðtÞi after a sufficiently long relaxation time period so that the
MSD slope is constant. This standard procedure was done after
a short transient period in all of the simulation trajectories. The
tension dependence of the diffusivity was determined from simu-
lations of the membrane–protein system started with a flat mem-
brane and letting the system equilibrate. After equilibration, the
MSD was computed and the diffusivity statistics determined by
generating several simulation trajectories for each reported tension
value. In this manner, both the energy minimizing shape profiles
and protein stochastic dynamics were obtained from the compu-
tational model.

SI Theory
The diffusion of a single protein on a fluctuating membrane has
been previously described theoretically by three closely related
approaches (13–15). The main ingredient in all these models is
the back action of the protein on the membrane fluctuations, an
effect of primary importance to predict quantitatively the drag
force exerted on the protein. In these models, it is also assumed
that the inclusion couples to the membrane curvature by means
of a spontaneous curvature modulus although the details of this
coupling vary in each model. In the first model developed by
E. Reister-Gottfried et al. (14), a system of coupled Langevin
equations describing the motion of the protein and the fluctua-
tions of the membrane is established, from which an effective
diffusion coefficient is extracted using a path integral approach.
These results have been complemented by numerical simu-
lations, which have also been used in the second approach de-
veloped by Naji et al. (13). In this reference, Naji et al. have
carried out an extensive numerical study of this problem, which
shows that the effective diffusion coefficient of the protein is
a smooth decreasing function of the protein spontaneous cur-
vature, of the solvent viscosity, and of the ratio of the protein
bending modulus and the membrane bending modulus. The
authors also find that their numerical results are well described
by a simple analytical expression of the effective diffusion co-
efficient obtained within an adiabatic approximation. In this
adiabatic limit, the membrane adopts a shape that minimizes its
energy evaluated at the instantaneous protein position. This
result can also be recovered from a third approach using an

operator formalism (15). In this approach, the effective drag
force experienced by an inclusion moving at constant velocity is
derived in the general case that the embedding medium is de-
scribed by a classical field that couples linearly to the Hamilto-
nian of the inclusion. Other possible couplings between the
inclusion and the membrane can certainly by considered; how-
ever, the simplest case in the membrane context is the one
considered, namely, the case where the membrane height field is
linearly coupled to the inclusion via the local membrane curva-
ture. In the following, we shall follow these assumptions to ac-
count for (i) the simulations of Naji et al., in particular the
smooth dependence as function of the protein bending modulus;
and (ii) the experimental results presented in this paper on the
diffusion coefficient versus membrane tension.
In this section, we assume that the membrane has no internal

structure. In contrast, in the following section, we extend this
calculation accounting for the bilayer structure of the membrane
and additional dissipation mechanisms within the membrane.

Effective Drag Force of a Diffusing Protein in a Membrane with No
Internal Structure.We consider a single protein diffusing on a mem-
brane patch of size L2. The membrane has a bending modulus κ
and a tension Σ; it is described by a height function hðrÞ in the
Monge representation. It is also embedded in a fluid of viscosity η.
The small inclusion we consider has a radius ap and a spontaneous
curvature Cp. For geometric reasons, Cp = θ=ap, where θ is the
angle associated with the conical shape of the protein, so that
Cp ’ 1=ap. We recall the Hamiltonian of this system, which contains
the familiar Helfrich part and a coupling term linear in curvature:

H0½h;R�= κ

2

Z
L2

d2r

�
∇2h

	2
+
Σ
κ
ð∇hÞ2 −ΘGðr−RÞ∇2h

�
; [S13]

where G is a weight function, which is normalized over the whole
membrane patch and which accounts for local deformation of
the membrane produced by the embedded protein. The amplitude
of this coupling is also quantified by the coupling constant Θ. This
Hamiltonian carries with it a cutoff length a, which corresponds to
the size of the lipids typically 5 nm. Although a and ap are distinct,
both lengths are numerically close to each other for the type of
protein inclusion considered here. Because the last term in Eq.
S13 arises from a constraint of membrane curvature, the coupling
constant Θ must scale linearly with the spontaneous curvature
modulus Cp.
Our main interest is on the force acting on the inclusion

f =−∇RH0½h;R�, which is expected to be of the form f =−λv when
the velocity of the inclusion v is sufficiently small, where λ is the
effective drag coefficient of the inclusion. To obtain this quantity,
we follow below the approach of V. Démery and co-worker (15).
Note that these calculations are carried out at fixed v but Démery
and co-worker have shown that the same result is obtained in the
ensemble where the force is fixed. We now switch to coordinates
moving with the inclusion so that hðr; tÞ= hðr−R; tÞ. The mem-
brane equation of motion with these new coordinates reads
as follows:

dh
dt

=
∂h
∂t

− v ·
∂hðrÞ
∂R

= −
Z

dr′Λ
�
r− r′

	 ∂H
∂hðr′Þ+ ξðr; tÞ; [S14]

where Λðr− r′Þ denotes the Oseen tensor and ξðr; tÞ is a white
noise such that hξðr; tÞi= 0 and�

ξðr; tÞξ�r′; t′	�= 2kBTδ
�
t− t′

	
Λ
�
r− r′

	
: [S15]

In the following, we shall assume that a steady state exists in this
moving frame. Implicitly, this means that the relaxation time of
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the slowest mode is shorter than the characteristic time of the
inclusion, so that for the inclusion the membrane appears at
equilibrium, an approximation that we further discuss below. It
follows from this adiabatic assumption that one can drop the term
containing the partial derivative with respect to time in Eq. S14.
Let us now focus on the mean value of the membrane height in
such a steady state, which obeys the following:

−v ·
∂hhðr; tÞi

∂R
=−
Z

dr′Λ
�
r− r′

	� ∂H
∂hðr′; tÞ



; [S16]

Now denoting with a bar the average field hðrÞ= hhðr; tÞi at
steady state, and its Fourier transform

hðkÞ=
Z

d2re−ik·rhðrÞ; [S17]

we obtain from Eq. S16 the solution

hðk; vÞ= −ΘκΛðkÞGð−kÞk2

2
�
−ikzv+ΛðkÞðκk4 +Σk2Þ�; [S18]

where ẑ is a normal vector along the direction of motion of the
inclusion in the plane of the membrane, R= ẑ z is the location of
the inclusion, and v its velocity in that direction. In addition, ΛðkÞ
is the Fourier transform of the Oseen tensor introduced above,
namely, ΛðkÞ= 1=4ηjkj. The stationary profile corresponds to the
value of hðk; vÞ for v= 0, which we denote simply as hðkÞ:

hðkÞ=−
ΘκGð−kÞk2

2
�
κk4 +Σk2

	: [S19]

The shape in real space of such a membrane is discussed in the
next paragraph for some specific choices of the weight function
GðrÞ. Note that, in all of the choices considered, we assume an
isotropic weight function so that GðkÞ is only a function of jkj.
We now come back to the force acting on the inclusion:

f =−∇RH0½h;R�=−∇zH0
�
h; ẑ z

�
=
Θκ
2

Z
d2r∇zG

�
r− ẑ z

	
∇2hðr; vÞ;

[S20]

which after an integration by parts and a Fourier transform
becomes the following:

f =−
Θκ

2ð2πÞ2
Z

d2kikzGðkÞk2hðk; vÞ: [S21]

After reporting Eq. S18 into this expression and expanding this
result to linear order in v, one indeed finds that f =−λv, with

λ=
κ2Θ2

4

Z
d2k

ð2πÞ2
k2zGðkÞk4

ΛðkÞ�κk4 +Σk2	2: [S22]

Now, the factor k2z in the equation above can be replaced by
1=2jkj2 due to rotational symmetry of the integrand. The final
result can be expressed using Eq. S17 as follows:

λ=
2η

ð2πÞ2
Z

d2kjkj3hðkÞhð−kÞ: [S23]

From such an expression, one recovers for a tensionless mem-
brane, equation 7 of Naji et al. (13), by transforming this integral
into a discrete sum over k modes. Such a result can also be

obtained by consideration of the rate of work done on the system
to move the protein with the specific velocity v. The idea of the
calculation is to evaluate this power loss from standard hydro-
dynamics in the adiabatic approximation, then to identify the
effective friction from the prefactor in front of v2, where v is
the velocity of the inclusion. Our expression agrees naturally with
the calculations of ref. 15. This justifies that the effect discussed
in this paper is really dissipation driven.
We would like to discuss now the possible relevance of the

membrane fluctuations to this effective friction coefficient. We
note that the effective friction coefficient, namely, Eq. S23, does
not involve the variance of the height fluctuations, as would be
expected in a typical fluctuation-related effect but rather the
product of the average steady height field. Furthermore, we also
note that the effective friction coefficient, namely, Eq. S23, does
not contain an explicit temperature dependence. In other words,
the result of this calculation would be the same if the temperature
of the membrane fluctuations was zero, at least at this order in the
calculation, which means within the adiabatic approximation.
These two points indicate that the effect described here is not
primarily driven by the thermal fluctuations of the membrane.
Another aspect related to membrane fluctuations is the validity

of the adiabatic approximation. This approximation supposes that
the characteristic time of the phenomenon that we care about—
namely, the protein diffusion—is slow with respect to the char-
acteristic time of the membrane fluctuations. This characteristic
time is the membrane relaxation time, which depends on the
fluctuations modes in a given patch.
Even at the lowest tension of our experiments of the order of

10−7 N/m, this relaxation time is dominated by the tension term
for a GUV of radius R. In the quasispherical approximation, the
mode n is characterized by the wavevector k= n=R, and the re-
laxation time τn is as follows (16):

τn = 4ηR
�
nΣ+ κn3=R2	−1; [S24]

where, as before, Σ is the membrane tension and κ is the bending
modulus. In the conditions of our experiment, we find that the
slowest relaxation time (for n= 2) is still significantly shorter
than the characteristic time for diffusion on a length R, namely
R2=ðD0n2Þ. For instance, for a radius of 6 μm, the ratio of mem-
brane relaxation time to diffusion time is ∼0.02, and for a radius
of 20 μm, it is 0.008. This estimation was made with the lowest
possible tension experimentally accessible namely 10−7 N/m and
the bending modulus corresponding to the experiment and typ-
ical radius of the GUV. For higher values of the tension and
larger radius of the vesicle, the membrane relaxation time will be
even shorter than the diffusion time. Therefore, this justifies
that, in our experimental conditions, the adiabatic approxima-
tion is well verified even for the slowest modes. Note that this
would also be the case in the quasiplanar approximation used in
the analysis above.
We now explain how to relate this effective friction coefficient

to the diffusion coefficient that is measured experimentally. Due
to rotational symmetry of the integrand of Eq. S22, one can
replace the factor k2z by 1=2jkj2 and in polar coordinates (θ, k),
one has d2k= dθkdk. Thus, the angular integral over θ gives 2π.
Using ΛðkÞ= 1=4ηk, one obtains the following:

λ=
κ2Θ2η

2

Z
kdk
2π

k7GðkÞ�
κk4 +Σk2

	2: [S25]

This integral runs from the lowest wavevector, which is of the or-
der of 2π=L, to the highest one, which is 2π=a. We approximate
the lowest bound by zero. Then using the change of variable
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k= 2πx=a and introducing the reduced tension σ =Σa2=4π2κ, we
find that the effective drag coefficient λðσÞ is as follows:

λðσÞ=Θ2η

2a
W0ðσÞ; [S26]

where

W0ðσÞ=
Z1
0

dx
x4Gð2πx=aÞ2�

x2 + σ
	2 ; [S27]

and the function Gð2πx=aÞ is the Fourier transform of the weight
function evaluated at the wavevector 2πx=a. In the limit of large
tension σ→∞ and for any choice of weight function, W0 → 0.
Indeed, a highly tense membrane has negligible fluctuations, and
thus no friction contribution due to the membrane fluctuations.
The flat configuration represents therefore a reference state,
corresponding to the bare friction λ0, which is predictable using
the Saffman–Delbrück model. The dissipation due to the fluid
displaced by the deformed membrane near the inclusion comes in
addition to the one due to this bare friction. Using the Einstein
relation, it follows that D0 = kBT=λ0 is the bare diffusion coeffi-
cient of the protein and that D0 is an upper bound for the diffu-
sion coefficient Deff = kBT=λeff . With the friction λeff the sum of
the bare friction λ0 and the friction arising from the membrane
fluctuations λðσÞ, Eq. 3 of the main text is recovered.
As expected, the function W0 is independent of the membrane

patch size L due to the assumption L � a, and as a result Deff is
also independent of L. Note that, due to some misprint, a similar
expression for D0=Deff , derived in ref. 14 for the case of a ten-
sionless membrane, contains a wrong additional L2 factor.
The dependence of Deff with the protein radius ap, can be

obtained if one assumes that the protein shape makes a fixed
angle with respect to the membrane so that Cp ∼ 1=ap and that
the relation Θ= 4Cpπa2p still holds. Then it follows from this that
Θ∼ ap. In the regime where the local membrane deformation is
much larger than the protein size ap � ξ, the drag will be
dominated by the contribution due to the membrane de-
formation. Therefore, using Eq. 3, one finds Deff ∼ kBTa=a2p,
which agrees with ref. 15 in this regime. Note that such a result is
also compatible with the Stokes–Einstein scaling law in 1=ap
obtained in ref. 17, because in this reference there is only one
characteristic length for the protein so a ’ ap.

Explicit Form of the Membrane Profile. The model also predicts the
deformation of the membrane near the inclusion, which is
computed below when the inclusion velocity is zero v= 0. The
Fourier transform of the average height is Eq. S19. In the par-
ticular case where the weight function is a Dirac function,
~GðkÞ= 1, the integral defining W0 (Eq. S27) can be calculated
analytically with the following result:

W0ðσÞ= 3σ + 2
2ðσ + 1Þ−

3σ1=2

2
arctan

�
σ−1=2

�
: [S28]

We note that, in this case, the value at zero tension is W ð0Þ= 1.
Using Eq. 6 of the main text, one finds that the Fourier trans-
form of the membrane profile is in this case:

hðkÞ=−
Θκk2

2ðκk4 +Σk2Þ: [S29]

The inverse Fourier transform can be done explicitly using polar
coordinates:

hðrÞ=−
Z

d2k

ð2πÞ2 e
ik·r Θκk2

2
�
κk4 +Σk2	; [S30]

= −
Z

kdk
4π

J0ðkrÞ Θκ
κk2 +Σ

; [S31]

where J0 is the J-Bessel function. Naturally, the result has cylin-
drical symmetry so only depends on r= jrj. After introducing the
correlation length ξ=

ffiffiffiffiffiffiffiffiffiffiffi
κ=
Pp

of membrane fluctuations, the in-
tegral over k leads to a modified Bessel function, and one obtains
the following:

hðrÞ= hðrÞ=−
Θ
4π

K0

�
r
ξ

�
; [S32]

where K0 is a modified Bessel function. From this expression, we
also see that Θ represents in this expression the characteristic
height of the membrane deformation.
To improve upon the choice of a Dirac function as weight

function, we also used Gaussian functions. More precisely, we
have chosen a Gaussian of variance equal to the square of the
protein size a2p. Although other choices of Gaussian functions are
possible, it is physically reasonable that the variance of that
function should scale with the protein size and be of that order
of magnitude. Furthermore, this choice corresponds to a weight
function, which is rather close to the one used in ref. 13. Thus,
we used the following:

GðrÞ= 1
2πa2p

exp

 
−

r2

2a2p

!
; [S33]

which leads after a 2D Fourier transform to the following:

GðkÞ= exp
�
−k2a2p=2

�
: [S34]

The function W ðσÞ introduced in the main text should thus be
given by the following integral:

W0ðσÞ=
Z1
0

dx
x4 exp

�
−x2a2pð2πÞ2=a2

�
ðx2 + σÞ2

; [S35]

which needs to be evaluated numerically.
For the membrane profile with the Gaussian weight function,

one needs to evaluate numerically the following integral, which
comes from the inverse Fourier transform of hðkÞ:

hðrÞ=−
Z

d2k

ð2πÞ2 e
ik·rGð−kÞ Θκk2

2
�
κk4 +Σk2	; [S36]

= −
Z

kdk
4π

J0ðkrÞ
Θκ exp

�
−k2a2p=2

	
κk2 +Σ

: [S37]

Fig. S6 illustrates the influence of the membrane tension Σ, the
coupling coefficient Θ and the protein radius ap on the mem-
brane profile. At long distance from the protein, all of the curves
collapse and tend to h= 0 corresponding to a flat membrane in
our representation.

Effective Drag Force of a Diffusing Protein in a Membrane with
Internal Structure. Several studies of membranes show that the
Hamiltonian of Eq. 2 fails to describe typical phenomena such as
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budding transitions or tube extractions from vesicles. One reason
for this is that such phenomena are intrinsically dynamic and
that, in a membrane with internal structure, additional dissipa-
tive mechanisms are present and must be considered to model
the dynamics correctly. Here, we shall be concerned mainly by
extending the description to include the bilayer architecture of
the membrane in the problem. To do so, we decorate each leaflet
with an additional field representing the lipid density deviation
about the equilibrium density, which we call ρ± . Deviation from
the equilibrium density for each layer can be accounted for with
the modified Hamiltonian (18):

H½h;R�=H0½h;R�+ km

2

Z
L2

d2r
h
ðρ+ − 2dHÞ2 + ðρ− + 2dHÞ2

i
;

[S38]

where H represents the mean curvature of the membrane, and
km is the elastic compression modulus of the 2D fluid within each
monolayer. A neutral surface can be defined by the property that
bending and stretching are decoupled in energy when deforma-
tions are defined with respect to it. The neutral surfaces of each
monolayer are placed a distance d from the overall neutral sur-
face of the bilayer.
The coupling between the local membrane shape and the

densities becomemore evident if we introduce the reduced density
difference ρ= ðρ+ − ρ−Þ=2 and the deviation ~ρ= ðρ+ + ρ−Þ=2 of
the mean density from its equilibrium value. In the Monge ap-
proximation, the above Hamiltonian takes the following form:

H½h;R�=
Z

d2k

2ð2πÞ2
h�
κk4 +Σk2	��hðkÞ��2 + κΘGðkÞk2hðkÞ

+ 2km
���~ρðkÞ��2 + ��ρðkÞ− dk2hðkÞ��2�i:

[S39]

Note that the previous Hamiltonian is recovered when ~ρðkÞ= 0
and ρðkÞ= dhðkÞk2. This corresponds to the case where the lipid
densities of each monolayer have relaxed to their equilibrium
value, bending is in this case controlled by κ. In contrast to that,
bending at frozen densities where ~ρðkÞ= ρðkÞ= 0 is controlled by
~κ= κ+ 2kmd2.

The density fields of each monolayers satisfy conservation laws
and are coupled to the membrane height field via boundary con-
ditions, which express the continuity of stress at each monolayer
interface. In addition to the restoring force coming from the
membrane elasticity and traction forces coming from the displaced
fluid above and below each monolayers, these boundary conditions
for the stresses include terms associated with the relative friction
between both monolayers, which is controlled by the friction co-
efficient b and the viscous shear damping within each monolayer
controlled by the coefficient μm (18).
The coupled equations for the two fields hðk; vÞ and ρðk; vÞ

now take the following form:

−ikzvhðk; vÞ=−
1
4η

�
~κk3 +Σk

�
hðk; vÞ

+
kmdk
2η

ρðk; vÞ− κΘGðkÞk
4η

;

[S40]

−ikzvρðk; vÞ=−
kmk2�

2b+ 2ηk+ μmk
2	 �ρðk; vÞ− dhðk; vÞk2	; [S41]

where k= jkj. One can immediately see from Eq. S41 that, when
v= 0, ρðkÞ= dhðkÞk2. As mentioned above, this corresponds to

the condition for having relaxed monolayers, in which case the
membrane is described by the simple Hamiltonian H0½h;R�. In
view of this, it is clear that the classical picture of a membrane
without internal structure still holds in this case but only for the
stationary profile when v= 0.
From Eq. S41 but now for v≠ 0, one finds that hðk; vÞ and

ρðk; vÞ are proportional to each other:

ρðk; vÞ= kmdk4hðk; vÞ�
2b+ 2ηjkj+ μmk

2	ð−ikzvÞ+ kmk2: [S42]

Then after plugging this result into Eq. S40, one obtains a closed
equation for hðk; vÞ. Now the force acting on the inclusion is still
given by Eq. S21. By expanding this force at small velocities, one
finds again the form f =−λv, with an effective friction coefficient

λ=
�
κΘ
2

�2 Z d2k

ð2πÞ2
2ηGðkÞ2k3�
κk2 +Σ

	2 ð1+ λ1Þ; [S43]

with

λ1 =
bd2k
η

+ d2k2 +
d2μmk

3

2η
: [S44]

We note that the friction coefficient takes the form of three in-
dependent contributions: the first term, namely, bd2k=η, repre-
sents the contribution of the friction between monolayers. The
second term, namely, d2k2, represents an additional contribution
of the hydrodynamic friction in the fluid, which adds to the
contribution calculated in Eq. S23 but which should be relevant
on smaller length scales than that contribution. The third term,
namely, d2μmk3=2η, represents the contribution of the dissipa-
tion within the monolayers, which is controlled by μm. At the
smallest length scales (largest k) of the order of 1 nm, this con-
tribution dominates, but at somewhat larger length scales of the
order of the protein size, there is a crossover to a regime con-
trolled by the friction between monolayers (18). On larger length
scales, the contribution of the hydrodynamics in the fluid dom-
inates due to the contribution taken into account in Eq. S23. In
the end, one can write as before in terms of reduced tension:

λðσÞ=Θ2η

2a

�
W0ðσÞ+ bd2

ηa
W1ðσÞ+ d2

a2
W2ðσÞ+ μmd

2

2ηa3
W3ðσÞ

�
;

[S45]

where

WiðσÞ=
Z1
0

dx
ð2πÞix4+iGð2πx=aÞ2

ðx2 + σÞ2
; [S46]

with i = 0, 1, 2 or 3. The effective diffusion coefficient is as
follows:

D0

Deff
= 1+

D0λðσÞ
kBT

: [S47]

Using well-known estimates for the lipid bilayer relevant pa-
rameters a= 5 nm, d= 1 nm (18), b= 109 J·s·m−4 (19) and μm =
6 × 10−10 J·s·m−2 (20), one finds that the relative importance of
each effects depends on the dimensionless factors bd2=ηa ’ 200,
ðd=aÞ2 ’ 0:04, and μmd

2=2ηa3 ’ 2. In view of this, it appears that
the monolayer friction plays the largest role in the effective fric-
tion of the protein (Eq. S45), and consequently on the experi-
enced mobility (Eq. 3).
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Considering these dissipative mechanisms internal to the mem-
brane, we find from Deff versus Σ (Fig. S6) and Eq. S47, a lower
coupling coefficient Θ= 3:4× 10−8 m, corresponding to a Cp =
0.16 nm−1. This value is compatible with the previous thermody-
namic measurements reported in ref. 4.

SI Simulations: Model for Membranes with Embedded
Proteins
We presented a detailed model and computational methods for
the coupling of a protein that induces curvature within a mem-
brane in refs. 11 and 13. Here, we assume a less general form for
the Hamiltonian and use the reduced model when linearizing the
membrane–protein coupling:

H=
κ

2

Z
L2

dr

�
∇2h

	2
+
Σ
κ
ð∇hÞ2

+Gðr−RÞ
�
−4Cp∇2h+ 4C2

p

��
:

[S48]

This Hamiltonian is the same one as the theoretical Hamil-
tonian in the main text, except for the last term, 4C2

p. However,
this last term does not contribute to the forces; hence the two
models agree under this reduction of the simulation Hamilto-
nian. Here, G is composed of G=Ap

~G, where Ap = 100  nm2 is
the area of the protein and

R
A⊥
dr ~G= 1. The comparison of the

coefficient in front of ∇2h to the linearized Hamiltonian from

the main text gives the relationship Θ= 4CpAp. The sign con-
vention simply represents whether the protein induces curvature
of the membrane that opens upward or downward, which for our
system does not affect in any way the diffusion. The specific
form of G used in the numerical simulations is given by
GðrÞ=Ap

~GðrÞ= Ap=ðΔ xÞ2ϕðx=Δ xÞϕðy=Δ xÞ; where ϕ is the Pe-
skin-δ function (Fig. S4A and ref. 21), given by the following:

ϕðuÞ= 1
16

8<
:

3− u+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 4u− 4u2

p
0≤ u≤ 1;

5− u−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−7+ 12u− 4u2

p
1≤ u≤ 2;

0 2≤ u:
[S49]

For the numerical simulations, we used the procedure in ref. 11
with Msupp = 4 mesh points under the support of G and per-
forming Na = 4 phase-factor averaging shifts. The size of the
support of G is 20 nm in each dimension, and hence the spatial
discretization is Δ x= 5 nm not including the phase factor aver-
aging. The total number of modes evolved in time is M = 27, and
hence the total box size L= 135 nm. The time step in the nu-
merical integration of the Langevin equations is Δt= 15:4 ps. For
the stiffness, we use κ= 20 kBT, and for the bare diffusivity, we
use D0 = 2:5 μm2=s. For the curvature, we use Cp = 0:875 nm−1,
which corresponds to Θ= 3:5× 10−7 m. The temperature was
taken to be 300 K, and the dynamic fluid viscosity of the solvent was
chosen to be 10−3 Pa · s. For the sampling of the diffusion co-
efficient, we ran four simulations consisting of at least N = 1× 108
time steps for each of the sampled tension values.
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Fig. S1. Averaged MSD as a function of time, estimated from multiple trajectories exploring a defined region of interest (ROI). Upper Left Inset illustrates, at
the bottom of a GUV, the ROI of various size considered for the single-QD tracking analysis; the truncated circle corresponds to the boundary of the area
explored by QDs within the depth of field of the microscope. Experimental data (symbols) are compared with a model (Eq. S10, solid line) that describes
a protein freely diffusing in 2D on a rectangle of length Lx and width Ly ; reported data: one GUV of radius = 23 μm, Lx = Ly = 0:98 μm ðΔÞ, 1:67 μm ð◇Þ,
2:35 μm ð∇Þ, and 3:05 μm ð○Þ. The dashed lines are the asymptotes corresponding to a linear behavior of the MSD at short times, 4Deff t with Deff = 2:0 μm2=s,
and a constant trend at long time, 0:0947ðL2x + L2yÞ. Lower Right Inset is a zoom at short time illustrating that the MSD appears linear with respect to time at
short time.
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Fig. S6. Lipid and protein lateral mobility in fluctuating membranes. Semilogarithmic plot of the diffusion coefficients ðDeff Þ as a function of the membrane
tension Σ, for lipids (DSPE, □), for AQP0 (◆), and KvAP (▲) labeled with streptavidin QDs. Each point represents a median diffusion coefficient obtained from
hundreds of individual trajectories for a GUV at a given tension; the error bars correspond to SE. KvAP data adjusted by Eq. S47 (solid line) yields a protein
coupling coefficient Θ= 3:4× 10−8  m considering a= 5  nm, κ= 20  kBT , d = 1 nm, b = 109 J·s·m−4, μm = 6× 10−10 J·s·m−2, and D0 ’ 2:5  μm2=s.

Movie S1. Simulation of a diffusing protein (Cp = 0:875  nm−1, D0 = 2:5  μm2=s) at low tension ðP = 5× 10−5  N=mÞ on a fluctuating membrane (135 × 135 nm;
κ= 20  kBT ). The acquisition interval between frames is 1.54 μs, and the total duration is 617 μs.

Movie S1
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Movie S2. Simulation of a diffusing protein (Cp = 0:875  nm−1, D0 = 2:5  μm2=s) at high tension ðP =5× 10−3  N=mÞ on a tensed membrane (135 × 135 nm;
κ= 20  kBT ). The acquisition interval between frames is 1.54 μs, and the total duration is 617 μs.

Movie S2
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