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Fluctuation theorems
for systems out of equilibrium
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2.

What is stochastic thermodynamics ?

Classical Thermodynamics
First and second law
Macroscopic systems : fluctuations are gaussian and small

Absence of fime as a parameter

Stochastic thermodynamics

First and second law at the trajectory level
Small systems : large non-gaussian fluctuations

Time enters as an essential parameter
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Jarzynski relation

Assume system equilibrated by the contact with a reservoir at temperature T at =0

Then a control parameter A, is applied; final state at time t is not in equilibrium

If system is disconnected from heat bath at =0 ~ W} = H(x¢, A\t) — H (g, \o)
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* An exponential average over non-equilibrium trajectories leads to equilibrium behavior
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« A method to evaluate free energies from non-equilibrium experiments

C. Jarzynski, PRL 78, 2690 (1997)



« Violations » of the second law of thermodynamics

Using Jensen's inequality  (exp(x)) > exp(x)

one obtains the second law (only valid on average) (W) > AF

Second law can be « violated » for particular realizations, but
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P(W < AF —¢) = / AW P(W)

oo

PiW)

0.00

B(AF—§) |
< / P(W)GB(AF_f—W) < P8

OO -4 -2 0 2 4 [ 8

Such « violations » are required for the JE to hold but they are exponentially rare.

« Violations » are pratically unobservable for macroscopic systems

units of kpT)



Systems in contact with a thermostat

d P,

Interaction with thermostat now described by a markovian evolution — =M, - P,

dt

L. OH,

Accumulated work up to time t: W, = / )\(7') W (xt)dT
0

Laplace distribution of joint distribution of work and of the fluctuating variable

A

Py(x,) = / AV Py (, W)e W

A

OP, . . OH -
satisfies (‘9—tt = M, - P, — yAa—)\)‘Pt
~ 1
The solutionis Py (x, 8) = (d(x — x)e_/BWt> — Z—e_BH/\(x)
A

« Jarzynski relation proved by integration over all x: <6—5Wt> — Q—BAF

More generally, for any observable A(x): (A(xy)e PWe) = Acq(zy)



Hatano-Sasa relation

Generalization when initial condition is in a hon-equilibrium steady state (NESS)

t
Work like functional Y, :/ dfj\%(xﬂ)\T) where  ¢(x,\) = —In Pgor(x, \)
0

* Average over non-equilibrium trajectories leads to steady-state behavior

<6_Yt> =1 T. Hatano and S. Sasa, (2001)

Now (Y;) > 0  where the equality holds for a quasi-stationary process



Crooks relation

Let us define forward and reverse processes which both start in an equilibrium with fixed value of A

(a) Forward process: A(t) (b) Reverse process: A(t = 1)
Forward trajectory ye={xg(1), O<t<t}

Reverse trajectory ya={xg(t), O<t<t}

with  2p(t) = 2(ty — 1)

If the reservoir is removed during the process

Pp(yr) _ Pp(zp(0) _ e PHEROX)  Z(6) We—AF)
Pr(yr)  Pr(zr(0)) Z(\;) e BHEr(tr)A))

As a particular case, at equilibrium, fluctuations are symmetric under time-reversal

Peq(VF) — Peq(VR)



Same result holds for systems obeying markovian stochastic dynamics provided

My(z — ') _ —B(H@E N)—H(z.))
My(z' — x)

Rk: this detailed balance condtion holds only if the heat bath is ideal

Through integration of trajectories of given value of W=W;

Pp(W) _ SB(W—AF)
Pr(—=W)

G. Crooks, PRE 61,2361 (1999)

Experiments : using RNA hairpin pulled by optical tweezers
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D. Collin,

Nature (2005)
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« Introducing KL divergence p‘q E p — Z
C

- asymmetric character of the measure is crutial

From M = eﬁ(WF_AF) by taking the average
Pr(vr)
W) — AF  (Wdiss
D(Pr|Pgr) = W) - i

kT — kgT

+  The functional Wy;ss = W — AF'  leads to the same estimate of dissipation as the
KL divergence of path probabilities

Non-equilibrium fluctuations created by irreversible processes (such as systems presenting
hysteresis) are asymmetric with respect to time-reversal



Evans-Searles and Gallavotti-Cohen relation

1. Transient fluctuation theorem of Evans-Searles

«  The system is initially at equilibrium and evolves towards a NESS

PT(AS) _ eAS/kB Evans DJ, Searles DJ, (1994)
PT(_AS)

« NESS can be created from multiple reservoirs or from time-symmetric driving

« Also holds separetely for parts of entropy production under conditions

2. Fluctuation theorem of Gallavotti-Cohen

« The asymptotic distribution of entropy production rate 0 = AS/T inaNESs
1. P.(o) o

lim —In

= Gallavotti 6., Cohen EGD, (1995)
r—oo T  P(—0) kT

« Implies relations for distribution of currents ina NESS



Trajectory dependent entropy for a particle or system

1.  Within Fokker-Planck equation (markovian) 0Dy (:Ut) = —0 9+ (x)

Definition : stochastic entropy St = — In Dt (:Ct) Seifert U., (2005)

2. Second law of thermodynamics

Heat dumped into heat bath assumed ideal according to Sekimoto : q

P
o Prlzdel o a
Prla*|xy] T
Then As =In Po ($0) —In pt(CBt) difference of Shanon entropy
P
Asior = In LCU;;] — As,, + As
Prlz}']

i isfi i i : —As¢o J—
which satisfies an integral fluctuation theorem by construction (e~ ~°t°t) =1

Rk: condtions for a detailed FT for s,,, are more restrictive



Fluctuation theorems for molecular motors

* Discrete ratchet model Velocity data of kinesin K. Vissher ef al., (1999)

€ —
0107 3
7?@%’&‘ @ @I E Esoo = ao;
Ae il A®E
W w2 ST S a0 e
a b: b @ : @ = 10 Ezao /20%
0 1 2 3 4 5 N o -6' - “ Fe(pw)? =
24, 10° 10 10° 10° 10°
[ATP] (uM)
: - -1
Average ATP consumption rate: r=111s
Strong coupling {===0.97

N | <

AW.C. Lau et al., PRL 99, 158102 (2007); D. L. et al., PRE 78, 011915 (2008) .



Minimal ratchet: thermodynamics

* Statistics of the displacement n(t) and of the number of ATP molecules consumed y(1) as
function of external and chemical loads ?

Velocity (mechanical current) v(f AlL) = llm < (t )>
dt

| . i d0)
ATP consumption rate (chemical current) r( f,AU) = hm ”

« At thermodynamic equilibrium: =0 and Au=0 , fluctuations of n(t) and y(t) are gaussian,
characterized by two diffusion coefficients D; and D,
* Near equilibrium: for small f and Au=0, linear response theory holds,
V= Lllf_l_LlZAlLl EinSTein r‘ela'l'ionsi L11:D1 Gnd LZZ:DZ
r=1Ly,f+L,Au Onsager relations: L;,=L,;

* What happens far from equilibrium ?



Large deviations of the currents

800

* Long time properties of n(t) and y(t) are .
embodied in the large deviation function G(v,r) 600 |
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* Equivalently, one has the cumulant generating function E(A,y)
<eln+}/y> ~ etE(l,}/)

_ OE - oF
oI ticul ,Au)=——-(0,0 d ,Au)=——-:(0,0
n particular v(f,Au) a2’( ) an r(f,Au) 87( )

* The functions G(v,r) and E(A,y) are related by Legendre transforms



Gallavotti-Cohen relation for a discrete ratchet model

* The function E(A,y) satisfies the Gallavotti-Cohen symmetry :

E(ﬂ“a 7):E(—ﬂ—f,—7/—A,U)

which implies the Fluctuation theorem in the long time limit:

Pr b(”(t )20
t !t
Pro b(n(t) v,y(t) =-7)
t

* Valid arbitrary far from equilibrium
Linear expansion near equilibrium leads to Einstein and Onsager relations

* Results from local thermodynamic constraints : Generalized Detailed Balance



Phase diagram and thermodynamic efficiency
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4 regions of mechano-transduction :

A: ATP in excess -> mechanical work
B: mechanical work -> ATP
C: ADP in excess -> mechanical work
D: mechanical work -> ADP

A: fv<0 and rAU>0
B: fv>0 and rAu<0
C: fv<O0 and;A,u>0
D: fv<0 and;A,u<0
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is maximum far from equilibrium
(which is reached on a point in (Ay,f) plane)



Gallavotti-Cohen relation for a continuous ratchet model

@, (x)

3 (x)
@,(x)
Flashing ratchet model
9 m ¢, (x)

also obeys the GC symmetry provided both mechanical and chemical variables are included
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D.L.etal., PRE 80, 021923 (2009); Séminaires Poincaré, biological physics (2009)



Modified fluctuation-dissipation theorems
out of equilibrium



Standard fluctuation-dissipation theorem (FDT)

Only holds for systems which are close to an equilibrium state

A perturbation: H,—>H,—h.0 isapplied at time t':

d(A(t d
Response function (for t>1') R(t,1") = % - ﬁ% <A(t)0(t ')>eq

" ln=0

Einstein (1905), Nyquist (1928);
H. Callen and T. Welton (1951), Kubo (1966)

Many attempts to extend the result to non-equilibrium systems



From Jarzynski equality to fluctuation-dissipation theorem (FDT)

More general form of Jarzynski equality

(A(m)ePVaiee) = (A(zy)).,

q

If dissipated work W 4. is small with respect to kT
t
(At ("Et)>eq ~ (At (.fll't)> -+ <At (:ct) / dT,hT/ah lngeq (CBT/, hTI)>
0

Take functional derivative with respect to perturbation

M) (D8l

R(t',t) =
(t %) Shy |, At




Modified fluctuation-dissipation theorem (MFDT) near NESS

Variant of Hatano-Sasa (2001) :
(Alwe)eld honiopecleh)) = (A(a,)

Response function near a non-equilibrium steady state for a general observable A

R(t,1) = = <At($t) D108 pusice, he) >
st

Particular case At/ (SBt/) — J. Prost et al. (2009)

U. Seifert et al. (2010)
Gener‘al case G. Ver'ley, K. MCl“iCk, D. L., EPL, 93, 10002 (2011)



Perturbation near an arbitrary
non-stationary state

Most general MFDT obtained from an Hatano-Sasa like relation:

d o1 Ry
R(t,,t) — @ <At($t) Ogﬂ'g(;:t t )>

G. Verley et al., J. Stat. Mech. (2011)

Several alternate formulations:

- In tferms of an additive correction (the asymmetry) which vanishes at equilibrium
M. Baiesi et al. (2009): E. Lippiello et al. (2005)

- In terms of a local velocity/current R. Chétrite et al. (2008); U. Seifert et al. (2006)

Rk: in all these formulations, markovian dynamics is assumed



Origin of the additive structure of MFDT

« Stochastic trajectory entropy  s¢(ct, [h]) = — Inm(cy, [h])

o Distinct but similar to 5t(ct, [h]) = —Inpe(ce, [h]) U. Seifert, (2005)

o It can be split into .
Reservoir entropy + Total entropy production

As (¢, [A]) ==As, (e, [ 1] +As,, (¢, [ ]
. Consequence of this decomposition for MFDT:

R, (1) =" <aAs(c |, A4e) R (m)——< A5 (e ), 4(e)

neq

= (Jf(cf)At (c)) =(v,(c)4(c))

* Additive structure of the MFDT involving local currents:

R(tat') — <(jt'(ct') _V(Ct'))At (Ct)>



The 1D Ising model with Glauber dynamics

* Classical model of coarsening : L Ising spins in 1D described by the hamiltonian

L
H({O-}) = _JZ O-io-i+1 _Hmo-m’
i=1

« System intially at equilibrium at 7 = o is quenched at time =0 to a final temperature T.

Iy o I 5 e e e o o O
vIilivivivel HEREERREEX

* At the time 1>0, a magnetic field H,, is furned on:
H t)=H 06(t-t"),

* The dynamics is controlled by time-dependent (via H,,) Glauber rates

me({a},{a}"F%(l—@tanh(ﬁf (0,,+0,.)+BH,3,)).



* Analytical verification :

- MFDT can be verified although the distributions p.({s},H,,)
even for a zero magnetic field are not analytically calculable

- Analytical form of the response is known

* Numerical verification : the distributions p;({s},H,,) can be obtained numerically for a small
system size (L=14); and the MFDT verified:

t
Integrated response function X,_,(f,t") = Jd TR, (1,7)

t
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G. Verley et al., J. Stat. Mech. (2011)



Fluctuation theorems for equilibrium systems



1. For non-equilibrium systems:

» Extension of Gallavotti-Cohen

1. P-(J
lim —1n L — € - (J — J/) P. Hurtado et al. (2011)
r—oo T P (J)
for any pairs of isometric current vectors ‘J| — |J/‘ and € is related to entropy

production

2. For equilibrium systems with discrete broken symmetry

«  For an ensemble of N Ising spins in a magnetic field

Pg(M) = Pg(—M)e?PBM P. Gaspard (2012)

« Equilibrium fluctuations in finite systems are in general non-gaussian

* Non-gaussianity particularly significant near critical points



« Consider N Heisenberg spins in a magnetic field N

Hy(o;B) = Hx(0;0) — B-Mn(0) with Mn(0) =) o

* Fluctuations of the magnetization M obey the general relation:
Pg(M) = Pg/(M) ¢/(B=B)M,
where M’ = Rg_l M thus |M| = |M’'| (isometric fluctuation theorems)
 This fluctuation theorem expresses a symmetry of the large deviation function defined by

Ps(M) = An(m) e N®sm)  f5r N — o0

« These fluctuation theorems quantify the breaking of a symmetry different from time
reversal

D. L. and P. Gaspard, under review (2014)



Tllustrative examples

(a) ’ (b)

* Curie-Weiss model in a magnetic field:
exact evaluation of the large
deviation function

@ ® 7

) i
2 -1 0 1,

« XY model in a magnetic field
numerical verification at low and
high tfemperatures

Qy(M.0)

(a) (b)

*  More complex symmetry breaking with
tensorial order parameter in
a liquid crystal mean-field model




Non-invasive estimation of dissipation from
trajectory information



Irreversibility as time-reversal symmetry breaking

« Direct determination of work or heat is difficult for most complex systems

* Non-equilibrium fluctuations created by irreversible processes have a well-
defined arrow of time

« This arrow of time can be « measured » by comparing the statistics of
fluctuations forward and backward in time using the KL divergence

« This amounts to enforce fluctuation theorems and exploit them to extract
a measurement rather than trying to « verify » them



Estimation of dissipation ina NESS

* Mesure of dynamical randomness associated with direct and reverse path
where in the reverse path the driving is reversed

dZS ERRF k‘B P+[Zt|2,’0]
— R|.R
dt  t—oo t " P_[zY2"]

)

Tdside (k,Tls)

D. Andrieux et al. (2008)

lul (um s~

* Inother types of NESS, the driving if present is constant and does not
need to be reversed -> simpler implementation with a single data series



Simpler implementation with no reversal of the driving

« Probability to observe a block of length m, (x;..x,,) within a trajectory of total
length n in the forward direction pg=p(x;..x,,

m(PF|PB) = Z p(Z1--Tm)

« Connection between thermodynamics and information-theoretic estimation

(AS) > d(pr|pe) = lim

1
H _Dm(PF|pB)
m—00 1M,

E. Roldan et al. (2010)



Dissipation in chemical reactions networks

Equilibrium condition (detailed balance): ki koks = k_1k_ok_3
Conservation of the total number of particles: linear dynamics

Can one detect that the system is out of equilibrium using only
information contained in the fluctuations of {n,,ng} or n, ?



Entropy production rate

€« with full information {n,,ng} trajectory

«————  with partial information {n,} trajectory

Possibility to distinguish equilibrium from non-equilibrium fluctuations
in a non-invasive way, even when only partial information is available

Method works for arbitrary number of non-linear chemical reactions

The quality of the estimate depends primarily on the resolution, i.e.
on the degree of coarse-graining of the input data

S. Muy et al., J. Chem. Phys. (2013)



Estimating dissipation in systems
with time-dependent driving

f
oc
> -

i
S. Tush et al., PRL, (2014)
Bz‘B (*) LIT | Teq | Stochastic work and heat on a cycle:
\f v W(r) = [y dt B(t)dsU(x(t), B(1))
L L — L 0(0) = [ ar,U(r(0). B(o))qr:
A >




Energy vs. information based estimation of dissipation

For information based estimation:
a) compare forward/backward probability distributions

b) compare equilibrium/non-equilibrium probability distributions

(a)

BWaiss (7)) 2 D(pr(t)||pr(T — 1))

R. Kawai et al. (2007)

Dissipation (k,T)
o — [} ) -
I
|

/}<Wdiss(r)> 2 D(l)neq(t)”peq(t))'

S. Vaikuntanathan et al. (2009)

p— o W -
T T T

Dissipation (kBT)

t(sec)
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