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Fluctuation theorems:  
where do we go from here ? 
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Fluctuation theorems  
for systems out of equilibrium 



1.  Classical Thermodynamics 

•   First and second law 
 
•   Macroscopic systems : fluctuations are gaussian and small  

•   Absence of time as a parameter 
 
 
 
 
2.  Stochastic thermodynamics 

•  First and second law at the trajectory level  
 
•  Small systems : large non-gaussian fluctuations 

 
•  Time enters as an essential parameter 

 
 

What is stochastic thermodynamics ? 
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Assume system equilibrated by the contact with a reservoir at temperature T  at t=0 
 
Then a control parameter lt is applied; final state at time t is not in equilibrium 
 
 
If system is disconnected from heat bath at t=0 
 
 
 
 
 
 
 
 
 
 
•  An exponential average over non-equilibrium trajectories leads to equilibrium behavior 

•  A method to evaluate free energies from non-equilibrium experiments 

 Jarzynski relation 
 

Wt = H(xt,�t)�H(x0,�0)

he��Wti =

Z
dx0peq(x0)e

��Wt

=
1

Z(�0)

Z
dxt

����
@xt

@x0

����
�1

e

��H(xt,�t) =
Z(�t)

Z(�0)
= e

���F

C. Jarzynski, PRL 78, 2690 (1997)  



Using Jensen’s inequality 
 
one obtains the second law (only valid on average)  
 
Second law can be « violated » for particular realizations, but 
 
 
 
 
 
 
 
 
 
 
 
 
•  Such « violations » are required for the JE to hold but they are exponentially rare. 

•  « Violations » are pratically unobservable for macroscopic systems 
  
 

  « Violations » of the second law of thermodynamics 
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  Systems in contact with a thermostat 
 

Interaction with thermostat now described by a markovian evolution 
 
 
 
Accumulated work up to time t: 
 
 
Laplace distribution of joint distribution of work and of the fluctuating variable 
 
 
 
 
 
satisfies 
 
 
The solution is  
 
 
•  Jarzynski relation proved by integration over all x:  

•  More generally, for any observable A(x):  
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Generalization when initial condition is in a non-equilibrium steady state (NESS)  
  
 
Work like functional                                            where                                             
 
 
 
•  Average over non-equilibrium trajectories leads to steady-state behavior 
 

Now                             where the equality holds for a quasi-stationary process 
 
 

Hatano-Sasa relation 
 

T. Hatano and S. Sasa, (2001)  

Yt =

Z t

0
d⌧ �̇

@�

@�

(x⌧ ,�⌧ ) �(x,�) = � lnPstat(x,�)

he�Yti = 1

hYti � 0



Let us define forward and reverse processes which both start in an equilibrium with fixed value of l 
 
 
 

                                                                                                                                    Forward trajectory gF={xF(t), 0<t<tf} 
 
                                                                                                                                 Reverse trajectory gR={xR(t), 0<t<tf} 
 
 

                                                                                                                                                          with  
 
 
 
 
 
 
 
If the reservoir is removed during the process 
 
 
 
 
 
 
As a particular case, at equilibrium, fluctuations are symmetric under time-reversal   
 
 
 

 Crooks relation 
 

Peq(�F ) = Peq(�R)

xR(t) = x

⇤
F (tf � t)

PF (�F )

PR(�R)
=

PF (xF (0))

PR(xR(0))
=

e

��H(xF (0),�i)

Z(�i)

Z(�f )

e

��H(xF (tf ),�f )
= e

�(WF��F )



Same result holds for systems obeying markovian stochastic dynamics provided  
 
 
 
 
 
Rk: this detailed balance condtion holds only if the heat bath is ideal  
 
 
Through integration of trajectories of given value of W=WF 
 
 
 
 
 
 
Experiments : using RNA hairpin pulled by optical tweezers 
 

D. Collin, Nature (2005) 

G. Crooks, PRE 61,2361 (1999)  PF (W )
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•  Introducing KL divergence 

    - asymmetric character of the measure is crutial   

 
 
•  From                                                            by taking the average 

 
 
 

•  The functional                                            leads to the same estimate of dissipation as the 
KL divergence of path probabilities 

•  Non-equilibrium fluctuations created by irreversible processes (such as systems presenting 
hysteresis) are asymmetric with respect to time-reversal 
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1.  Transient fluctuation theorem of Evans-Searles 

•   The system is initially at equilibrium and evolves towards a NESS 
 
 
 
 
 

•  NESS can be created from multiple reservoirs or from time-symmetric driving  
 

•  Also holds separetely for parts of entropy production under conditions  
 
 
2.  Fluctuation theorem of Gallavotti-Cohen  

•  The asymptotic distribution of entropy production rate                       in a NESS 

•  Implies relations for distribution of currents in a NESS 

Evans-Searles and Gallavotti-Cohen relation 
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Trajectory dependent entropy for a particle or system 

 
1.  Within Fokker-Planck equation (markovian) 

 
•  Definition : stochastic entropy  

 
 
2.  Second law of thermodynamics 

•  Heat dumped into heat bath assumed ideal according to Sekimoto : q 

 

 
 
Then                                                                                  difference of Shanon entropy 
 
 
 
 
 
which satisfies an integral fluctuation theorem by construction 
 
Rk: condtions for a detailed FT for stot are more restrictive 
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•  Discrete ratchet model                                      Velocity data of kinesin                                  

                     
 
 
 
 
 
 
 
  

K. Vissher et al., (1999) 

ℓ = v
r
≈ 0.97

1111r s−=
 
•  Average ATP consumption rate:                           

•  Strong coupling  

      
A.W.C. Lau et al., PRL 99, 158102 (2007); D. L. et al., PRE 78, 011915 (2008) . 

Fluctuation theorems for molecular motors                



•  Statistics of the displacement n(t) and of the number of ATP molecules consumed y(t) as 
function of external and chemical loads ? 

•  At thermodynamic equilibrium: f=0 and Dµ=0 , fluctuations of n(t) and y(t) are gaussian, 
characterized by two diffusion coefficients D1 and D2 

•  Near equilibrium: for small f and Dµ=0, linear response theory holds,  

                                                      Einstein relations:  L11=D1 and L22=D2 
 

     Onsager relations:  L12=L21 
 
•  What happens far from equilibrium ? 	



Minimal ratchet: thermodynamics 
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•  Long time properties of n(t) and y(t) are  
embodied in the large deviation function G(v,r) 

 
 
 
 
 

•  Equivalently, one has the cumulant generating function E(l,g)  

 
 
 
 
•  In particular            and  

•  The functions G(v,r) and E(l,g) are related by Legendre transforms 	



Large deviations of the currents 
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•  The function E(l,g) satisfies the Gallavotti-Cohen symmetry : 
 

which implies the Fluctuation theorem in the long time limit: 
 
 
 
 
 
 
 
 

•  Valid arbitrary far from equilibrium 
   Linear expansion near equilibrium leads to Einstein and Onsager relations 

•   Results from local thermodynamic constraints : Generalized Detailed Balance  

Gallavotti-Cohen relation for a discrete ratchet model 
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4 regions of mechano-transduction :                               Thermodynamic efficiency 
 
A: ATP in excess -> mechanical work 
B: mechanical work -> ATP  
C: ADP in excess ->  mechanical work 
D: mechanical work -> ADP 
                                                                       is maximum far from equilibrium 
                                                                           (which is reached on a point in (Dµ,f) plane)                  
 
 
 
 
 

Phase diagram and thermodynamic efficiency  

: 0 0A f v r µ< Δ >and 
: 0 0B f v r µ> Δ <and 
: 0 0C f v r µ< Δ >and 
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D. L. et al., PRE 80, 021923  (2009); Séminaires Poincaré, biological physics (2009)    

Flashing ratchet model 
 
 
 
 
 also obeys the GC symmetry provided both mechanical and chemical variables are included  
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Modified fluctuation-dissipation theorems  
out of equilibrium 



Standard fluctuation-dissipation theorem (FDT)  
 

A perturbation :                                      is applied at time t’ : 
 
 
 
Response function (for t>t’)  
 
 
 
 
 
 
 
Many attempts to extend the result to non-equilibrium systems 
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Only holds for systems which are close to an equilibrium state  
 



•  More general form of Jarzynski equality 
 
 
 

•  If dissipated work               is small with respect to kT 
 

 
 
 
•  Take functional derivative with respect to perturbation 

From Jarzynski equality to fluctuation-dissipation theorem (FDT)  
 



•  Variant of Hatano-Sasa (2001) :  

•  Response function near a non-equilibrium steady state for a general observable A 
 
 

 

•  Particular case 

•  General case  

Modified fluctuation-dissipation theorem (MFDT) near NESS 
 

J. Prost et al. (2009) 

         U. Seifert et al. (2010) 
G. Verley, K. Mallick, D. L., EPL, 93, 10002 (2011) 



•  Most general MFDT obtained from an Hatano-Sasa like relation:  
 
 
 
 

 
•  Several alternate formulations: 

G. Verley et al., J. Stat. Mech. (2011) 

Perturbation near an arbitrary  
non-stationary state 

 

 
- In terms of an additive correction (the asymmetry) which vanishes at equilibrium 
 

  
 
- In terms of a local velocity/current 
 
 
Rk: in all these formulations, markovian dynamics is assumed 
 

M. Baiesi et al. (2009); E. Lippiello et al. (2005)    

R. Chétrite et al. (2008); U. Seifert et al. (2006)   



•  Stochastic trajectory entropy 
 

o  Distinct but similar to 

o  It can be split into     
 

•  Consequence of this decomposition for MFDT:  

•  Additive structure of the MFDT involving local currents: 
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  The 1D Ising model with Glauber dynamics  

•  Classical model of coarsening : L Ising spins in 1D described by the hamiltonian 

•  System intially at equilibrium at             is quenched at time t=0 to a final temperature T.  

•  At the time t’>0, a magnetic field Hm is turned on: 

•  The dynamics is controlled by time-dependent (via Hm) Glauber rates  
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•  Analytical verification :  

- MFDT can be verified although the distributions pt({s},Hm)  
                              even for a zero magnetic field are not analytically calculable 
 
                          - Analytical form of the response is known 
                               
 
•  Numerical verification : the distributions pt({s},Hm) can be obtained numerically for a small 
                                         system size (L=14); and the MFDT verified: 

                                         Integrated response function 
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G. Verley et al., J. Stat. Mech. (2011) 



Fluctuation theorems for equilibrium systems 



1.  For non-equilibrium systems:  

•  Extension of Gallavotti-Cohen  
 
 
 
 
 
 
for any pairs of isometric current vectors                           and        is related to entropy 
production  

 

2.  For equilibrium systems with discrete broken symmetry 

•  For an ensemble of N Ising spins in a magnetic field 

•  Equilibrium fluctuations in finite systems are in general non-gaussian 

•  Non-gaussianity particularly significant near critical points 
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•  Consider N Heisenberg spins in a magnetic field  

                                                                                              with 
 
 
•  Fluctuations of the magnetization M obey the general relation: 
 
 
 
 
where                                  thus                              (isometric fluctuation theorems)  
 
 
•  This fluctuation theorem expresses a symmetry of the large deviation function defined by 

 

•  These fluctuation theorems quantify the breaking of a symmetry different from time 
reversal 
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D. L. and P. Gaspard, under review (2014)    



Illustrative examples 

•  Curie-Weiss model in a magnetic field:  
  exact evaluation of the large  
         deviation function 
 
                                         

 

•  XY model in a magnetic field 
    numerical verification at low and  
    high temperatures 

 

•  More complex symmetry breaking with  
tensorial order parameter in 

      a liquid crystal mean-field model 



Non-invasive estimation of dissipation from  
trajectory information 



Irreversibility as time-reversal symmetry breaking 

•  Direct determination of work or heat is difficult for most complex systems 

•  Non-equilibrium fluctuations created by irreversible processes have a well-
defined arrow of time  

•  This arrow of time can be « measured » by comparing the statistics of 
fluctuations forward and backward in time using the KL divergence 

•  This amounts to enforce fluctuation theorems and exploit them to extract 
a measurement rather than trying to « verify » them  



Estimation of dissipation in a NESS 

•  Mesure of dynamical randomness associated with direct and reverse path 
where in the reverse path the driving is reversed  

•  In other types of NESS, the driving if present is constant and does not 
need to be reversed -> simpler implementation with a single data series 
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D. Andrieux et al. (2008) 



 
•  Probability to observe a block of length m, (x1..xm) within a trajectory of total 

length n in the forward direction pF=p(x1..xm)  
 

 

•  Connection between thermodynamics and information-theoretic estimation 

Simpler implementation with no reversal of the driving 

E. Roldan et al. (2010) 



 
•  Equilibrium condition (detailed balance): 

 
•  Conservation of the total number of particles: linear dynamics  

 
•  Can one detect that the system is out of equilibrium using only 

information contained in the fluctuations of {nA,nB} or nA ?  
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B C 

k-1 

k1 k3 

k-3 

k2 

k-2 

Dissipation in chemical reactions networks 
 



with full information {nA,nB} trajectory 

S. Muy et al., J. Chem. Phys. (2013) 

with partial information {nA} trajectory 

 
•  Possibility to distinguish equilibrium from non-equilibrium fluctuations 

in a non-invasive way, even when only partial information is available 
 

•  Method works for arbitrary number of non-linear chemical reactions  

•  The quality of the estimate depends primarily on the resolution, i.e. 
on the degree of coarse-graining of the input data 



Estimating dissipation in systems  
with time-dependent driving 

S. Tush et al., PRL, (2014) 

   Stochastic work and heat on a cycle: 



Energy vs. information based estimation of dissipation 

R. Kawai et al. (2007) 

For information based estimation: 
 
a)  compare forward/backward probability distributions 

  
b)  compare equilibrium/non-equilibrium probability distributions    
 

S. Vaikuntanathan et al. (2009) 
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