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The exam consists of three independent parts. The questions of each part are also inde-
pendent and can be solved by using previous results. It is not necessary to answer all questions
to obtain full credit.

Lecture notes are allowed.

1 Balance and detailed balance

The detailed balance fulfills the condition of convergence towards equilibrium for a stochastic
process illustrated by the Monte Carlo method. One considers here a new algorithm based
on the balance equation which provides a better convergence towards equilibrium. For a lat-
tice model, one considers that by starting from a given configuration, n configurations are
available (including the current one) for the next configuration. The equilibrium weight of a
configuration ¢ is given by p;.

> 1-1 By introducing the raw stochastic flow (probability current in the space of configurations
visited by the algorithm) from the state i to j, v(i — j) = p;w(i — j) where w(i — j) is the
transition matrix element between states ¢ and j, and by using the probability conservation,
show that

n

pi=Y wv(i—j), Vi (1)

j=1

> 1-2 By using the fact that p; is a stationary solution of the problem and that w(i — j) can
be interpreted as a conditional probability distribution, show that

n

pi=) v(j =), Vi (2)

=1

> 1-3 Show that the Metropolis algorithm can be reexpressed as

S 1 : .,
(i — j) = mmm(pi,pj) for i # j (3)
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Figure 1: Metropolis algorithm: 3 configuration weights (left side) and rate stochastic flows
(right side) .

> 1-4 How is the detailed balance expressed in terms of raw stochastic flow?

> 1-5 Figure 1 shows the interpretation of the Metropolis algorithm in terms of raw stochastic
flows for 3 configurations. The area of each box (p1, pa, p3) corresponds to the weights of the
three configurations. Explain why the flow stochastic rate fills each box and why the right box
does not contain v(3 — 3).

> 1-6 The average rejection rate R corresponds to the ratio of the number of rejected configu-
rations over the total number of configurations, show that R can be expressed as a function of
all v(i — 4) and p;.

> 1-7 Draw a similar figure with 4 configurations such that p; = 3py, p2 = p3s = 2ps. Hint:
Consider first the box 4 and draw the figure such that p, is corresponds to 3 unit lengths..

A new algorithm is proposed (see Fig. 2): first the maximum weight (p;) is allocated to
the second box. It saturates the second box, and the remainder is all put into the third one.
Next, ps is allocated to the partially filled box and the box 1. The same procedure is repeated
for ps.

> 1-8 Why is this algorithm rejection free?

> 1-9 Why the detailed balance is broken and what about the balance condition?
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Figure 2: New algorithm :3 configuration weights (left side) and rate stochastic flows (right
side) .

2 Optimal finite time process in thermodynamics

We consider below a system which is driven through the application of an external time-
dependent control parameter A(7). The following Langevin equation describes the driven over-
damped motion of a single degree of freedom z in a 1D potential V(x, \),

() = -nEAD) gy (@)

where £(7) is a Gaussian white noise such that ({(7)) = 0 and (£(7)&(7)) = 2ukgTé(T — 7').
For the sake of simplicity, one set u = kgT = 1.  Initially, the system is in equilibrium in the
potential V' (x, \g), and we choose Ay = 0. During the interval 0 < 7 < ¢, the control parameter
is varied from A at the initial time to A; # 0 at the final time 7 = ¢. Below, we are particularly
interested in the optimal protocol A*(7) which minimizes the mean work for an imposed finite
duration ¢ of the process.

> 2-1 Write the expression of the work for an arbitrary potential which corresponds to a
realization of this process. Explain why the work is in fact a stochastic variable, and give the
expression of the mean work.

In the following, we assume that the potential is harmonic of the form
1 2
Viz,7) = 5 (z = A(7))". ()
Let us first consider two simple cases where: (i) the control parameter is varied infinitely slowly,

corresponding to the quasi-static limit when ¢ — oo and (ii) the control parameter is varied
very fast, corresponding to the limit ¢ — 0.



> 2-2 For both cases, obtain the expression of the mean work (I¥) and the variation of free
energy AF. Why can one say that the results are compatible with the second law of thermo-
dynamics.

> 2-3 Let us now return to the general problem of determining the optimal the control param-
eter A\(7) which optimizes the mean work in a fixed given time t. To progress, introduce the
variable u(t) = (x(t)) and obtain an evolution equation for this variable using the Langevin
equation.

> 2-4 With the equation obtained above, write the mean work in terms of only w(t) and its
derivatives. This mean work should have the form of a sum of a boundary term plus an integral
of the form fot dr?, where the dot means the time derivative.

> 2-5In order to optimize the mean work, one should solve the Euler-Lagrange equations
associated with the mean work obtained above. In the present case, the Euler-Lagrange equation
is very simple i = 0. What is the solution of this equation compatible with the boundary
conditions 7

> 2-6 Minimize the mean work for fixed Ay and ¢, and deduce from this that the optimal

protocol has the form
1+7
(1) = A ) 6
(1) =My ()

> 2-7 Deduce from the above, the expression of the optimal mean work. The result should
have a compact simple form. Verify that the results obtained in question 2 for cases (i) and (ii)
are recovered when ¢ — oo and ¢ — 0 respectively.

> 2-8 The optimal protocol differs from the simple linear protocol A(7) = As7/t. Verify that
the mean work associated with that protocol is not optimal in the sense that

W= (A3t (t+ et — 1) > W, (7)

where W* is the optimal mean work found previously.

3 Equilibrium properties of a fully-connected Ising model

One considers an Ising model of N spins (o; = £1) whose Hamiltonian is given by

Jo
H = —N Uigj (8)
i<j
where Jy > 0 is the ferromagnetic strength.
N .
> 3-1 By introducing the intensive variable m = %, express the Hamiltonian in terms of

m, Jo and N. Justify that the energy of the system is extensive in the thermodynamic limit.



> 3-2 Show that the ground states (corresponding to the lowest energy) are given when o; = +1
or o; = —1 for i € [1,n].

> 3-3 By using the formula section, show that the canonical partition function is given by

+o00
7 = exp (—BJo) |/ 6% S / dz exp (_WToNxz Py me—) (9)
oo i

where {0;} denotes all configurations of the system.

>3-4 Summing over all configurations, show that the partition function in the large N limit

is given by
+o0
Z:mﬂﬁmnﬁgf[ exp(—NBf (8, 2)) (10)

> 3-5By using the formula section, justify that f(8) = min,(f(5,x)) represents the free
energy per spin in the themodynamic limit.

> 3-6 By minimizing f(3,x) and assuming that the value of x corresponds to the mean mag-
netization per spin, show that the system has a nonzero magnetization for 5 < 1 and equal to
0 for > 1. Infer that the phase transition is continuous.

The dynamics of the system is a Markovian process which is the Glauber dynamics: The
transition rate of a spin flip 0; — —o; is given by

(0: — —01) = %(1 ~ o;tanh(8hy)) (11)

where h; = + > i Oi-
> 3-7 Show that the dynamics satisfies the detailed balance.

One can show that the dynamics obeys

0
5 \0i(t) = (ti(t) —ou(t)) (12)

%@(t)aj(t)) = ((ti(t) = 04(t))a; () + ((£;(t) — 0;(t))ai(t)) for i # j (13)

where the brackets denotes over the thermal history of the system and over initial conditions,
and t;(t) = tanh(BJoh;(t)).
The equal time correlation function between ¢ and j is defined as

CZ]<t,t) =<< O'Z(t)O'J(t> > — < O'Z(t) >2 (14)
=< Acg;(t)Ao;(t) > (15)

where Ao; = 0;— < 0; > and the global correlation function as

Clt,0) = 3 Gt 1) (16)



> 3-8 Due to the permuation invariance between spins, there are only two different correlation
functions, one local and one nonlocal Cj; = Cj,. + O(N) and C;; = % + O(N?), show that

Cy(t,t) is the sum of Cj,c and Cyy.

> 3-9 Show that Cjoeq = 1 — m?(t)

> 3-10 By using that < t; >~ tanh[$.Jym], show that

om = —m + tanh(SJym)
ot
> 3-11 Show that, for ¢ # j
< AhiAO'j >= M + O(N_2)
> 3-12 Infer that 8C (o1
—%(t’ ) _ —2a(t)Cy(t,t) + b(t)

where a(t) = 1 — 3Jo[1 — tanh*(B.Jym)] and b = 2(1 — m tanh(B.Jym)).

> 3-13 Show that the global correlation function is given as

Cylt, 1) = (1) (Og“’a 0+ / dt%i(é%)

where r(t) = exp(f dt'a(t))

4 Formula

The Gaussian identity gives

bt
exp(bm?) = \/i/ dz exp(—bx® + 2bmzx)
™ —00

(17)

(18)

(21)

also called the Hubbard-Stratonovitch transformation. For a given function g, the saddle-point

method states that for large N

/_ h dxexp(—Ng(x)) ~ exp(—Nmin,(g(x)))

o0

(22)



