

Université Pierre et Marie Curie Parcours MSA Processus Stochastiques

Année 2013 - 2014

TD N°4: Processus de Poisson

I - Loi de Poisson

On va montrer qu'un processus de comptage $(N_t)_{t \in \mathbb{R}_+}$ tel que $N_0 = 0$ est un processus de Poisson, *i.e.* stationnaire, à accroissements indépendants et à événements rares, *si et seulement si* la variable aléatoire N_t suit une loi de Poisson de paramètre λt où λ est un nombre réel positif.

1- Démontrer que si la variable N_t suit une loi de Poisson de paramètre λt , i.e. si

$$P([N_t = k]) = \frac{e^{-\lambda t} (\lambda t)^k}{k!}$$

alors le processus est à événements rares.

- 2- On va maintenant montrer la réciproque, *i.e.* que dans un processus de Poisson la variable aléatoire N_t suit une loi de Poisson. Pour ce faire on va établir des relations fonctionnelle et différentielle entre les probabilités $P([N_t = k])$.
- a) En écrivant $P([N_{t+s} = k])$ comme une somme sur le nombre d'événement ayant eu lieu à l'instant t montrer que, pour un processus de Poisson, on a la relation :

$$P([N_{t+s} = k]) = \sum_{i=0}^{k} P([N_t = i])P([N_s = k - i]).$$
(1)

On pose alors $P([N_t = k]) = \pi_k(t)$ et l'on va montrer que :

$$\pi_k(t) = \frac{e^{-\lambda t}(\lambda t)^k}{k!} \ . \tag{2}$$

b) On étudie tout d'abord le cas k=0. Que devient l'équation (1)? Montrer que $\pi_0(t)$ est continue sur tout \mathbb{R}_+ . Puis, en supposant en plus que $\pi_0(t)$ dérivable sur \mathbb{R}_+ , montrer que $\pi_0(t)$ s'écrit :

$$\pi_0(t) = e^{-\lambda t}$$

où λ est un réel positif.

c) On va démontrer la relation (2) par récurrence sur k grâce à une équation différentielle sur $\pi_{k+1}(t)$. Pour établir cette équation on regarde le nombre d'événements qui se sont produits jusqu'à l'instant t+h en faisant intervenir le nombre d'événements qui se sont produits jusqu'à l'instant t. Montrer que l'on a alors :

$$\pi_{k+1}(t+h) = \sum_{i=0}^{k+1} \pi_i(t) \pi_{k+1-i}(h)$$
.

d) Montrer que, moyennant l'hypothèse que le processus est à événements rares, l'on a :

$$\pi_{k+1}(t+h) \simeq \pi_1(h)\pi_k(t) + \pi_0(h)\pi_{k+1}(t)$$
 (3)

e) Montrer alors que $\lim_{h\to 0} \pi_1(h)/h = \lambda$. Déduire alors de l'équation (3) l'équation différentielle sur $\pi_{k+1}(t)$:

$$\pi'_{k+1}(t) = \lambda \pi_k(t) - \lambda \pi_{k+1}(t)$$
 (4)

f) En résolvant cette équation et en utilisant l'hypothèse de récurrence montrer que :

$$\pi_{k+1}(t) = \frac{e^{-\lambda t}(\lambda t)^{k+1}}{(k+1)!} \ . \tag{5}$$

II- Propriétés de la loi de Poisson

- 1- Que vaut la probabilité conditionnelle : $P([N_{t+s} = k | N_s = i])$ avec $i \leq k$?
- 2- Déterminer l'espérance $E[N_t]$ interpréter puis la variance $V[N_t]$.
- 3- On s'intéresse à la loi de la durée séparant deux occurrences d'un événement. On se place à un temps t_0 et on s'intéresse à la variable T, temps d'attente jusqu'à l'occurrence du prochain événement. Déterminer la loi de T, $P([T \le t])$. En déduire E[T].

III- Applications de la loi de Poisson

- 1- Les arrivées d'autobus à une station sont décrites par un processus de Poisson d'intensité λ . Chaque autobus s'arrête un temps fixe τ à la station. Un passager qui arrive à un instant θ monte dans le bus si celui-ci est là, attend pendant un temps τ' , puis, si l'autobus n'est pas arrivé pendant le temps τ' , quitte la station et s'en va à pied. Déterminer la probabilité que le passager prenne l'autobus.
- 2- Sur une route à sens unique, l'écoulement des voitures peut être décrit par un processus de Poisson d'intensité $\lambda=1/6~{\rm s}^{-1}$. Un piéton qui veut traverser la route a besoin d'un intervalle d'au moins 4s entre 2 voitures successives.
 - a) Calculer la probabilité pour qu'il doive attendre.
 - b) Le nombre moyen de voitures qu'il voit passer avant de pouvoir traverser la route.