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Stochastic thermodynamics

1 Principles of stochastic thermodynamics
In stochastic thermodynamics, thermodynamic quantities are defined at the trajectory level and are

time-dependent quantities. We illustrate these ideas on the classic example of a Langevin equation in 1D of the
form :

ẋ = µF (x, λ) + ξ(t), (1)

where F (x, λ) is the force acting on the particle of position x, λ is a control parameter, µ is the mobility and
ξ(t) is a white noise satisfying 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′). The force F can be decomposed into
a conservative force, deriving from the potential V (x, λ) and a non-conservative force f(x, λ). The Einstein
relation is assumed D = Tµ.

. 1-1Define the work and the heat at the trajectory level, and write the first law for this Langevin equation.
Why is the assumption of the Einstein relation required ?

. 1-2What is the form of the Fokker-Planck equation associated to this Langevin equation ? The solution of
that equation will be written p(x, t).

. 1-3One introduces the stochastic entropy defined as s = − ln p(x(t), t), where x(t) satisfies the Langevin
equation above. In an evolution between time 0 and time τ , what is the change of stochastic entropy ∆s ?

. 1-4The change of entropy of the medium ∆sm is defined as the heat which is released into it. Show that the
total entropy production can be splitted into ∆sm and ∆s.

. 1-5Calculate 〈∆ṡtot〉, 〈∆ṡm〉 as integrals over the variable x involving the current j(x, t) associated with the
Fokker-Planck equation. Verify that the second law holds with these expressions.

. 1-6 Show using a path integral representation of the Langevin equation that ∆sm can be expressed as the
ratio of two distributions of trajectories associated with a forward and backward evolution.

. 1-7 Show that 〈exp(−∆stot)〉=1, deduce from that the Jarzynski relation as a particular case.

2 Detailed Jarzynski equality for a logically irreversible procedure
We consider a system obeying a stochastic dynamics with a Hamiltonian H(x, λ), where x is the fluctua-

ting variable which is observed and λ is a variable which is controlled externally. The system is in contact with
a heat bath at the temperature T = 1/β. In the absence of non-conservative forces, the expression of the work
in a process that starts at x0 at time 0 with a value of the control parameter fixed to λ0 and ends at position
x(t) = xt at time t with λ(t) = λt is

W =

∫ t

0

dt′λ̇t
∂H(xt, λt)

∂λ
. (2)

We now assume that the system starts initially at t = 0 at equilibrium, characterized by a p.d.f. ρeq(x, λ)
and ends at time t in a non-equilibrium state characterized by a p.d.f. ρ(x, t). It is possible to prove a variant
of Jarzynski relation in the form

〈δ(x− xt)e−βW 〉 =
e−βH(x,λt)

Z0
, (3)

where Z0 represents the partition function at the initial state.

. 2-1Derive from this equation the relation which is usually known as the Jarzynski relation.
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Figure 1 – Left : Evolution of the potential in chronological order from state a to state f when a time-dependent
force is applied to a brownian particle represented here as the red circle. Right : Evolution of the average heat
divided by kBT as a function of the duration of the cycle τ . The symbols represent experimental data points.

. 2-2 Show that Eq. 3 is equivalent to

ρ(x, t)

ρeq(x, λt)
〈e−βW |x = xt〉 = e−β∆F (t), (4)

where the notation 〈..|x = xt〉 means a conditional average for the variable xt to have the value x at time t and
∆F (t) is a quantity which you will define.

We now want to apply these results to an experiment which consists in manipulating a brownian particle
by applying a time-dependent force with a given protocol (see Fig.1). Initially, the particle is in a symmetric
potential and it can be found in one of the two wells of the potential with equal probability (Fig 1a). Then the
barrier of this potential is lowered (Fig 1b), it is tilted (Fig 1c,d) in such a way that the particle always ends
up in the right minimum of the potential (Fig 1e). The force is then returned to its original value (Fig 1f).

. 2-3What are the difference of free energy and internal energy during a complete cycle of such a process,
why ?

. 2-4 Show that in these conditions,

〈e−βW 〉→0 =
1

2
, (5)

where the notation 〈..〉→0 means an average over a process which will end with the particle in the right minimum
of the potential as in figure 1f.

. 2-5We now assume that the process is not perfect and that the particle ends up most of the time in the
right minimum (with probability Ps), but occasionnaly may also end up in the left minimum (with probability
1 − Ps). Calculate the corresponding exponential average of the work for these two situations and show that
together they are compatible with the Jarzynski relation.

From the results obtained above, derive a bound for the average work which depends only on Ps (irres-
pectively of the final state). Show that this bound can be interpreted as a change of entropy of the system.

. 2-6Fig. 1 shows the average heat recorded in the experiment as function of the duration of the cycle. Explain
how this experiment relates with the Landauer principle which states that in any irreversible logical operation,
the minimum dissipation is −kB ln(2) per bit involved in the logical operation.
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